Building a **NEW** Cancer Therapy
Pacylex Overview

New Cancer Mechanism:
Recently discovered mechanism of cancer proliferation exposed a new therapeutic target

New Drug:
First-in-kind, oral, small molecule drug for this target
- Lead drug PCLX-001 is water soluble and >90% orally bioavailable
- Predictive diagnostic test identifies cancer patients with key biomarker associated with target (personalized medicine)

Proof in Blood Cancers:
Eliminates tumors in 4 different mouse models of leukemia and lymphoma including one human drug-resistant tumor model; >10x more potent than ibrutinib or desatinib

Proof in Solid Tumor Cancers:
Inhibits tumor growth in mouse models of Breast and Lung cancer

Traction:
Accepted into Merck Accelerator, closed initial Seed round funds, 14-day tox dosing completed in rat and dog, pre-IND meeting completed, 3 Canadian clinical sites lined up, in discussions with MD Anderson Cancer Center in US for AML Phase 1, Phase 1 protocol written, CRO ready

Timeline in Drug Development:
IND and initial clinical dosing in < 1 year; follow precedent for 3-4 year clinical development and approval (Fast Track, Orphan eligible)

TEAM
CEO Michael J. Weickert, PhD
CSO Luc G. Berthiaume, PhD
CMO John Mackey, MD, FRCP
COO Ryan Heit, MSc, MBA

FOUNDED: 2012
Non-dilutive capital to date - >$6M
Founder & Seed capital ~$2M

PROJECT STATUS: Pre-IND

COMPLETED: Animal efficacy, PK/PD, Biomarker monoclonal antibody, 14d tox, ADME studies, pre-IND meeting

NEXT STEPS: GLP tox studies (Late ’19), IND (early ’20), Phase I/IIa study (mid-’20)

SEEKING: $3 million to initiate Phase I clinical trials & expand indications, $25+ million to finish initial Phase II
Myristoylation helps ~200 proteins attach to cell membranes to enable control of growth and metabolism.

Protein + enzymes: NMT1 or NMT2 = ~200 proteins - most involved in homeostasis: Control of normal growth and metabolism, Typically through protein-protein interactions in membrane complexes.
NMT2 expression is lost in numerous cancer types, is the lowest in lymphoma and is NOT compensated by an increase in NMT1 expression.

same trend seen in tumours

Data extracted from www.CCLE.org
Low NMT2 associated with higher mortality in patients with leukemia (AML) and lymphoma (DLBCL)

AML = Acute Myelogenous Leukemia; DLBCL = Diffuse large B-cell lymphoma (DLBCL); NMT = n-myristoyltransferase
NMT2 may be a cancer switch

Normal NMT level = normal cell growth and metabolism

NMT2 switched off = uncontrolled cell growth = cancer

BUT if you give these cancer cells an NMT inhibitor drug...

NMT = enzymes that modify proteins involved in growth and metabolism - to reach their active biological location

Happens in 19 different types of cancer, most often in blood cancer

...the cancer cells die via apoptosis while normal cells are unaffected
Lead Drug = PCLX-001: Developed for Wellcome Trust program to treat African sleeping sickness

Part of a family of NMT-inhibitor drugs developed by University of Dundee (UK)

- $6M support from Wellcome Trust (UK medical charity)

Originally developed to treat African Sleeping Sickness

- Drug doesn’t cross the blood brain barrier
- Unable to eradicate reservoir of parasites in brain so disease always came back
- Project cancelled

Pacylex licensed entire drug family and is repurposing a different molecule, with ideal properties for human NMTs, for cancer
Robotic screen analysis of PCLX-001 mediated cell growth inhibition (GI) on 169 cell lines sorted by cancer type suggests hematological cancer cell lines are more vulnerable to NMT inhibition.

Horizon: 68 cell lines screened

- Cell death
- Growth inhibition

Oncoline: 101 cell lines screened

- Cell death
- Growth inhibition
PCLX-001 selectively kills cancer cell lines deficient in NMT2 by turning on apoptosis (cell death)

PCLX-001 selectively kills cancer cells deficient in NMT2 at a drug concentration to which normal cells are insensitive by disabling myristoylation which initiates apoptosis.

Cell viability

- Cancer cell lines
- Normal cell lines

Apoptosis

*indicated by cleaved PARP-1 and caspase-3
Normal and patient cancer cells treated with PCLX-001 for 96h then viability tested

AML cancer cells from patients are at least 50x more sensitive to PCLX-001 *ex vivo* (7 patients shown) than normal peripheral blood monocyotic cells (PBMCs) or freshly isolated human monocytes (Lymphocytes).

- The EC_{50} of PCLX-001 in AML patient cells is ~200nM
- The EC_{50} of PCLX-001 in normal PBMC cells is > 10 µM (10,000nM)
- PCLX-001 is at least 50-fold more lethal to AML cancer cells than normal PBMC and >>50-fold than lymphocytes
Tests enable the identification of patients with NMT2-deficient cancers

Patient selection strategy: Tumour biopsy → IHC or RNA-ISH → Identify Patients with NMT2-deficient tumours

IHC

A. NMT1 staining

- Normal
- BL
- DLBCL

B. NMT2 staining

- No NMT2

[Images of tissue samples showing staining patterns for A. NMT1 staining and B. NMT2 staining]
PCLX-001 eliminates tumors in leukemia and lymphoma xenograft models including patient-derived tumors

NHL – non Hodgkin’s Lymphoma
BL – Burkitt’s Lymphoma
AML - Acute Myelogenous Leukemia (AML)
MOA in lymphoma: PCLX-001 inhibits BCR signaling leading to apoptosis in BL2 cells (>10x potency of dasatinib and ibrutinib)
PCLX-001 inhibits tumor growth in lung and breast cancer xenograft models (PDX)

Small Cell Lung Cancer Xenograft Model

Human Breast Cancer Xenograft Model
Toxicology progress - clear path to IND

<table>
<thead>
<tr>
<th>Species</th>
<th>Duration</th>
<th>Doses (mg/kg)</th>
<th>Findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rat</td>
<td>Acute (1)</td>
<td>100, 1,000</td>
<td>No noteworthy signs at 100 except low monocytes and lymphocytes in 1 rat. At 1,000mg/kg, significant effects on blood and GI including 1 animal death</td>
</tr>
<tr>
<td>Dog</td>
<td>Acute (1)</td>
<td>10, 50</td>
<td>Vomiting, GI bleeding and body weight loss in 1 animal (of 2) at 50mg/kg</td>
</tr>
<tr>
<td>Rat</td>
<td>14-days</td>
<td>10, 25, 75</td>
<td>No dose limiting toxicity, slightly lower weights in some 75mg/kg dose – drug exposure declines from d1 to d14</td>
</tr>
<tr>
<td>Dog</td>
<td>14-days</td>
<td>5, 25</td>
<td>Fatal toxicity in 3-5 days at 25mg/kg dose, slight body wt. loss for 5mg/kg in drug and control animals, no change in drug exposure from d1 to d14</td>
</tr>
</tbody>
</table>

50mg/kg effective dose in mice = 4mg/kg target in humans = 25mg/kg in rats; ~7mg/kg in dogs

Work performed at:

![Citoxlab](citoxlab.png)

PACYLEX
ACCELERATING THE PATH OF CANCER CARE
PACYLEX PHARMACEUTICALS

4mg/kg

>12mg/kg

2.7 – 13.5 mg/kg
Development partners engaged

- Merck Invention Accelerator, Edmonton, 2018
- CRO engaged (TRIO)
- Phase I clinical sites
- Draft Protocol complete for DLBCL and solid tumors
- Pre-IND meeting response August 15 defined IND path
- MD Anderson - parallel Phase 1 in AML
- Accepted and advanced in 2019-2020 Creative Destruction Lab Health West cohort
• Exclusively licensed 3 issued API patents
 – N-myristoyl transferase inhibitors - WO 2010026365 A1
 • Issued: EP 2323987 A1 and US 9,156,811 B2
 • Issued: US 9,828,346 B2

• Synthetic lethality and the treatment of cancer (‘580) - PCT/CA2012/000696 (Priority date 2011/07/22), in National filing phase in AU & NZ, BR, CN, IL, KR, MX, SG, ZA, EP, US, and CA, and issued in Japan (2014-520475) and Russia (2014101787);

• Synthetic lethality and the treatment of cancer (‘581) - PCT/CA2013/050821 (Priority date 2012/10/30), issued in South Africa (2015/02280), Japan (2015-538225), Israel (238481) and Russia (2015118294) and pending/under examination in AU & NZ, BR, CN, KR, MX, SG, EP, US, and CA;

• Epigenetic silencing of NMT2 (‘313) - PCT/CA2016/050846 (Priority date 2015/07/17), published in US, EU and Japan.

Counsel = Borden, Ladner, and Gervais LLP

PACYLEX
PHARMACEUTICALS
Clinical costs do not include CMC/manufacturing, regulatory costs or operating costs

Orphan and Fast Track accelerates drug development

Based on development and registration of Tagrisso for NSCLC

Other recent examples:
- IDHIFA (enasidenib mesylate) approved in 47 mo.
- Jakafi from IND to approval in 55 mo.

Clinical costs do not include CMC/manufacturing, regulatory costs or operating costs
Team well suited to developing new cancer therapy

Michael Weickert, PhD – CEO
CEO Sonescence, CEO SEA Medical Systems, CBO, Corium, Stratagent Life Sciences, Therashock, VP Development Auspex, Senior Program Executive, Nektar, Ligand, NCI/NIH

Luc Berthiaume, PhD – CSO
World leader in protein fatty acylation; Founder of Eusera and Pacylex; global distribution experience; 3 patents; commercialized antibody design and production

John Mackey, MD, FRCP – CMO
Director of clinical trials at the CCI; former Director of TRIO (International clinical trial organization, 200 people); founder of 3 companies; Extensive links to pharma

Ryan Heit, MSc, MBA – COO
Technology and business development expert; 20+ companies assisted in early-stage commercialization; founder/co-founder of 4 companies; leads deal screening for VA Angels

Vanessa Grant - Counsel
Counsel with Norton Rose Fulbright - expertise in mergers and acquisitions, corporate governance, private equity and venture capital. Led legal on largest Canadian biotech deal: Celgene option for TRPH-395 from Triphase Accelerator (2019; $980M)

Naveen Pemmaraju, MD – Clinical Advisor
Associate Professor in the Department of Leukemia, Division of Cancer Medicine

David Jenish – Drug Development
30+ years experience in research and process development for therapeutics

Naveen Pemmaraju, MD – Clinical Advisor
Associate Professor in the Department of Leukemia, Division of Cancer Medicine

Michael Weickert, PhD – CEO
CEO Sonescence, CEO SEA Medical Systems, CBO, Corium, Stratagent Life Sciences, Therashock, VP Development Auspex, Senior Program Executive, Nektar, Ligand, NCI/NIH

Vanessa Grant - Counsel
Counsel with Norton Rose Fulbright - expertise in mergers and acquisitions, corporate governance, private equity and venture capital. Led legal on largest Canadian biotech deal: Celgene option for TRPH-395 from Triphase Accelerator (2019; $980M)
Oncology is THE hot spot

- Four of top ten pharmaceutical firms already engaged in discussions
- All want to see tox (next step – in progress)
- Pharma successful at replicating and confirming Pacylex results
- 2018: Accepted into Merck Incubator in Edmonton, AB, Canada
Pacylex value dashboard consistently positive

<table>
<thead>
<tr>
<th>Category</th>
<th>Value</th>
<th>Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unmet need</td>
<td>low</td>
<td>very high</td>
</tr>
<tr>
<td>Market size</td>
<td>$100M</td>
<td>$1,000M</td>
</tr>
<tr>
<td>Market drivers</td>
<td>weak</td>
<td>very strong</td>
</tr>
<tr>
<td>Competition</td>
<td>strong</td>
<td>first in class</td>
</tr>
<tr>
<td>US Regulatory</td>
<td>std NDA</td>
<td>Orphan, Fast Track</td>
</tr>
<tr>
<td>Time to Mkt.</td>
<td>10yrs</td>
<td>3yrs</td>
</tr>
<tr>
<td>Cash to Mkt.</td>
<td>$500M</td>
<td>$100M</td>
</tr>
<tr>
<td>Team</td>
<td>weak</td>
<td>expert</td>
</tr>
<tr>
<td>IP</td>
<td>narrow</td>
<td>very broad; API</td>
</tr>
<tr>
<td>FTO</td>
<td>issues</td>
<td>clear</td>
</tr>
<tr>
<td>Corporate interest</td>
<td>low</td>
<td>very high</td>
</tr>
</tbody>
</table>
• **$5M Convertible Note**
 – **Goal: get into patients in <1yr**
 – >$1.8M closed, $3.2 remains
 – Manufacturing scale up and GMP production (underway)
 – 28-day GLP tox (Dec 2019)
 – IND with FDA and Health Canada (May 2020)
 – First-in-patient dosing (July/Aug 2020)

• **$25M Series A early 2020**
 – Fund Clinical program through Phase 2
 – Automatic conversion of notes
Key take home - Pacylex is potential blockbuster

- PCLX-001 is a genuine breakthrough
 - Oral
 - Activity against many blood and solid tumor cancers
 - New mechanism – not redundant with other products (synergy)
 - Tumor killing not tumor inhibiting

- Rapid development
 - On IND path with filing in 6-9mo

- Potential for early partnering or exit
 - >10x as potent as Ibrutinib (Imbruvica; $4.4B 2017) and Dasatinib (Sprycel; $2.3B 2017)

Making a real difference in cancer
Contact Info
Michael Weickert, PhD
CEO
michael.weickert@pacylex.com
650-218-1840

Ryan Heit, MSc, MBA
COO
ryan.heit@pacylex.com
780-264-4295