Combinatorial Approx Discrete-Time D

symboıc aynamıcs, itunerary map, top semı-conjugacy

- a standard proof that the logistic map is chaotic begins by establishin shift on 2 symbols
(labeled) Conley index theory to prove surjectivity (first, surjectivity onto continuity and compactness to argue surj. onto symbolic system)
compute cycles, grow isolating nbhd from union of cycles, gluing of res different periodic orbits [interplay between grid/resolution and spatial s gives rise to index pairs with complicated topology (multiple generators
isolation -- S subset of grid, oS one-box neighborhood, check that coll (invariant set) doesn't change -- $\operatorname{Inv}(\mathrm{S})=\operatorname{Inv}(\mathrm{oS})$
need automation to process complicated indices (mult. generators/regi

Sarah Day

Department of Mathematics College of William \& Mary

May 23, 2017

Joint work with Rafael Frongillo

an itinerary: $\quad \rho(x)=0110001110101100111 \ldots$

all itineraries:

See also Mischaikow, Mrozek I995, Tucker 1999

Symbolic Dynamics:

Example I: the full shift on two symbols $\sigma: \Sigma_{2} \rightarrow \Sigma_{2}$
Phase space: $\quad \Sigma_{2}=\left\{\mathbf{s}=s_{0} s_{1} s_{2} \ldots \mid s_{i} \in\{0,1\}\right\}$

$$
010101 \ldots=\overline{01}
$$

$$
\text { Map: } \quad \sigma\left(s_{0} s_{1} s_{2} \ldots\right)=s_{1} s_{2} s_{3} \ldots
$$

$\sigma(\overline{01})=\sigma(010101 \ldots)=101010 \ldots=\overline{10}$

Vertex Shift Presentation:

Sofic subshifts serve as catalogues of dynamics.

periodic orbits \sim cycles

connecting orbits \sim connecting paths recurrent dynamics ~ SCC topological entropy $\sim \log (s p(A))$

Problem:
Many systems don't come to us as sofic subshifts.

Use computational topology (and ...) to build a symbolic description.

> If $\rho \circ f=\sigma \circ \rho$ and ρ is a homeomorphism, then f and σ are topologically conjugate.
> If the diagram commutes but we relax the condition that ρ is 1 -to- 1 , then f is topologically semi-conjugate to σ.

Use Conley Index Theory to prove surjectivity.

Example: the Henon map

Outer Approximation

Outer Approximation

interesting structure in the outer approximation

growing an isolating neighborhood

labeling regions

building an index pair

computing the index

$$
H_{*}\left(P_{1}, P_{0}\right) \cong\left(0, \mathbb{Z}^{15}, 0,0, \ldots\right)
$$

transition graph on components

index map on generators

computing the index

$$
\begin{aligned}
\operatorname{Con}_{*}\left(S^{\prime},\right. & \left.\left.\left.\left.\left.h\right|_{J} \circ h\right|_{I} \circ h\right|_{H} \circ h\right|_{G}\right) \\
& =([-1][1][1][1])_{s} \\
& =[-1]_{s} \\
& \neq[0]_{s} \quad \text { (since not nilpotent) }
\end{aligned}
$$

Therefore, $\overline{G H I J} \in \operatorname{Im}(\rho)$.

verifying symbolic dynamics

$$
\begin{array}{ccc}
S & \xrightarrow{h} & S \\
\downarrow \rho & & \\
\downarrow^{\prime} & \\
\Sigma_{T} & \xrightarrow{\sigma} & \Sigma_{T}
\end{array}
$$

$$
\begin{gathered}
\Sigma_{T}=\left\{\left(s_{i}\right)_{i} \mid\left(s_{i}, s_{i-1}\right) \text { an edge in } T\right\} \\
\rho(x)=\left\{\left(s_{i}\right)_{i} \mid h^{i}(x) \in s_{i}\right\}
\end{gathered}
$$

Since the Conley index corresponding to each cycle in T is nontrivial, ρ maps onto the set of periodic points in Σ_{T}.
ρ is continuous and S is compact.
Therefore, ρ maps onto Σ_{T}, the closure of the set of periodic points in Σ_{T}.

Consider a symbol transition graph weighted by matrices (individual Conley index maps).

Before:

Consider a symbol transition graph weighted by matrices (individual Conley index maps).

Before:

Consider a symbol transition graph weighted by matrices (individual Conley index maps).

Now:

Note: nilpotency is preserved by the index. If an index map is not nilpotent, the index is nontrivial and the corresponding invariant set is nonempty.

$$
\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]^{k}=\left[\begin{array}{cc}
1 & 0 \\
0 & \pm 1
\end{array}\right]
$$

problem: $\quad\left[\begin{array}{ll}1 & -1\end{array}\right]\left[\begin{array}{l}1 \\ 1\end{array}\right]=0$ cut at least one edge from $\{(0,1),(1,0)\}$

verified subshift
two fixed points, zero entropy

problem: $\left.\quad \begin{array}{ll}1 & -1\end{array}\right]\left[\begin{array}{l}1 \\ 1\end{array}\right]=0$
prohibit the word 101
the cycle 1001 has matrix product

$$
\left[\begin{array}{cc}
1 & -1
\end{array}\right]\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]\left[\begin{array}{l}
1 \\
1
\end{array}\right]=\left[\begin{array}{ll}
1 & -1
\end{array}\right]\left[\begin{array}{c}
1 \\
-1
\end{array}\right]=2
$$

$$
\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right] \bigcirc \text { [1-1] }
$$

the cycle $10^{k} 1$ has matrix product

$$
\begin{gathered}
{\left[\begin{array}{ll}
1 & -1
\end{array}\right]\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]\left[\begin{array}{l}
1 \\
1
\end{array}\right]=\left[\begin{array}{ll}
1 & -1
\end{array}\right]\left[\begin{array}{c}
1 \\
-1
\end{array}\right]=2 \text {, if } k \text { is even }} \\
{\left[\begin{array}{ll}
1 & -1
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
1 \\
1
\end{array}\right]=\left[\begin{array}{ll}
1 & -1
\end{array}\right]\left[\begin{array}{l}
1 \\
1
\end{array}\right]=0, \text { if } k \text { is odd }} \\
\text { prohibit } 10^{k} 1 \text { for } k \text { odd } \\
\text { (this is not a subshift of finite type) }
\end{gathered}
$$

Finite state machine approach (D., Frongillo) Cocyclic subshifts (Kwapisz 1999)

length 1 paths

$$
\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right] \odot \sim \text { [1] }
$$

$$
\left\{0,\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]\right\} \quad\{1,[1]\}
$$

$$
\left\{0,\left[\begin{array}{l}
1 \\
1
\end{array}\right]\right\}
$$

length 1 paths

$$
\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right] \odot \sim \text { [1] }
$$

$$
\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right] \odot \sim \text { [1] }
$$

unprocessed length 3 paths

$$
\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right] \odot \sim \text { [1] }
$$

unprocessed length 3 paths

Even Shift and Fixed Point

0
1

edge shift

Theorem. [D., Frongillo] The topological entropy for the Henon map is bounded from below by 0.4555 (0.4410 using DFT).

Galias: topological entropy of $h \approx 0.4650$ Newhouse, Berz, Grote, and Makino: topological entropy of $\mathrm{h} \geq 0.4617$

Theorem. [D., Frongillo] The topological entropy for the Henon map is bounded from below by 0.4555 (0.4410 using DFT).

KSR sample result (D., Kalies)

Combinatorial approximation from data

Combinatorial approximation from data

Combinatorial approximation from data

Combinatorial approximation from data

approaches:

correct the problen holes/gaps
(Harker et al. 201
M. Wess. Computing Topological Dynamics from Time Series. Ph.D. Dissertation, Florida Atlantic University, 2008.

Shaun Harker, Hiroshi Kokubu, Konstantin Mischaikow, and Pawel Pilarczyk. Inducing a map on homology from a correspondence. Proceedings of the American Mathematical Society, 2015.

Zachary Alexander, Elizabeth Bradley, James D. Meiss, and Nicole F. Sanderson. Simplicial multivalued maps and the witness complex for dynamical analysis of time series. SIAM J. Appl. Dyn. Syst., 14(3):1278-1307, 2015.
adapt the grid to t interpolate to fix th (Wess 2008, Ale>

Thank you

Work supported by NSF DMS 0955604.

