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The black-legged tick (Ixodesscapularis
or I. scapularis), also known as the deer
tick, is the primary vector that transmits
Lyme disease (also called Lyme
Borreliosis) in North America. Since2008,
in the United States,over 30,000 Lyme
diseasecasesare reported nationwide
every year (most incidences of Lyme
diseasein the westernUnited Statesare
caused by another Ixodid tick species
called the western black-legged tick, I.
pacificus). (Figure1)

Occurrenceof the black-leggedtick used
to be prevalent and endemic to the
central-northern, northeastern and
eastern United States. Due to climate
change,a considerablenumber of black-
legged tick infested area have been
observed in the southern and south
eastern United States potential to
increaseLymediseaserisk in local area
and poseseriousthreat to public health.
(Figure2)

Abstract Method & Materials

The deer tick (Ixodesscapularisor I. scapularis), also known as the black-
legged tick, is the primary vector that transmits Lyme Disease(LD) in
NortheasternUnited States. To contain the geographicexpansionof Lyme
diseaseticks acrossthe USin recent decades,ecologicalstudieshave been
conducted to understand the biotic and abiotic environmental factors
affecting tick activity. We observedin preliminarysurveysthat the tick host-
seekingactivity variesacrosssmall local areas. Theprimary objectiveof this
project is to identify the environmentalfactorsthat impactdeer tick questing
activitiesat the micro-geographicscale. From2017-2018, we collectedticksat
four New YorkCity suburbanlocationsduring tick nymph and adult questing
seasons. Tick samplingwas conductedwithin 5m Ĭ5m sites and field data
including surface temperature and relative humidity were measured.
Meanwhile,geospatialtechnologieswere leveragedto processdigital images
includingLIDAR(LightDetectionand Ranging)and NAIP(NationalAgriculture
ImageryProgram)in order to acquire environmentaldata with high spatial
resolution. Regressionmodels were then built with respect to different
temporal scalesand evaluatedwith the AICc(AkaikeInformation Criterion)
approach. Modeling resultsreveal that predictorsincludingtemperatureand
NDVI(NormalizedDifferenceVegetationIndex)define the temporal patterns
of the tick questingactivity while hardwoodcoverageand forest boundaries
defineits spatialpatterns. Thefindingsuggeststhat suburbanareaswith more
hardwood coverageas well as landscapesunder more fragmentedcanopies
maybecharacterizedwith higherquestingtick populations.

Introduction

LIDAR (Light Detection and Ranging) Data Processing

Conclusion

Overall, dominant local environmental predictors vary with respect to
illustratingthe spatialandtemporalpatternsof deertick questingactivity. The
temporal pattern of ǘƛŎƪǎΩhost-seekingactivity is regulated by seasonality,
which is consistentwith temperatureand vegetationindexand alsoservesas
an indicatorfor tick life stages. In general,habitatscharacterizedwith warmer
surface temperature and more vigorouslygrowing plant coveragetend to
havehigherquestingdeer tick populations. Conversely,significantdecreasein
questingtick populationsmayoccurwhenenvironmentalvariablesfall outside
suitableintervalsfor tick activity. Onthe other hand,the spatialpattern of tick
questingactivity is defined by local landscapeof vegetatedarea. Hardwood
forests characterized with large canopy layers formed by round-leafed
deciduoustree species,as opposedto needle-leafed pine forests where the
microclimate is usually hotter and dryer[1], are better at maintaining air
moisture in a way that is more beneficialto deer tick habitats. In addition,
spatially more heterogeneoussuburban landscapeswith fragmented tree
canopiesseem to have larger questing deer tick populations[2] since these
areasare coveredby abundant ecotonal vegetation that provide preferred
forageto supportlargepopulationanddiversityof theǘƛŎƪΩǎhostspecies[3,4].
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Figure10: (left) Numbersof questingticks(adult deer ticksare representedwith white boxes; nymphaldeer ticksare representedwith blue boxes; mean
tick numbersare representedwith green triangles; red line indicatesaveragedaily temperatures; blue lines indicate seasonalgaps,during which ticks
remaininactivebecauseof the developmentaldiapause)aresummarizedby samplingdate. Adult tick populationisannuallybimodal: tick activitiesgenerally
peakin mid springandmid fall (duringwhichclimaticvariablesandtick activitiesareconsistent,t = 0.684, p = 0.496) but significantlydecreaseat the endof
the seasons(t = -4.253, p = 4.375× 10-5, comparingwith peakseasons); (right) Questingtick populationsummarizedby samplingarea. CaumsettStatePark
(CSP) and ConnetquotRiverStatePark (CRSP) in LongIsland,NYare geographicallyclose,tick numbersobservedin these two parksŘƻƴΩǘappearto be
significantlydifferent (t = -0.586, p = 0.562). However,samplingresults in RockefellerPark Preserve(RPP) and Fire IslandNational Seashore(FINS) are
inconsistentwith the previoustwo parks. Thereasonmaybe that RPPlocatesin the WestchesterCountyand its elevationsaregenerallyhigherthan parks
in LongIsland; in addition,FINSischaracterizedwith desert-like landscape,makingthe localwoodlandhabitatsunableto maintainsufficientair moisturefor
a largedeer tick population(only4 deer tick nymphswerecollectedduringa four-hour tick expedition).

Figure3.: Map of the StudyAreas. Tickexpeditionswere conductedin CaumsettState Park (CSP), ConnetquotRiverStatePark (CRSP), RockefellerPark
Preserve(RPP), andFireIslandNationalSeashore(FINS).

Figure4: (left) άCƭŀƎƎƛƴƎέwasconductedto 5m × 5m transectsthat were pre-selectedand markedin the field. Ticknumberscollectedwithin the same
transectwere aggregated. Fielddata includinggeographiccoordinates,surfacetemperature,andrelativehumidity were measuredduringfield work; (right)
a host-seekingadult femaledeer tick on the leaf tip.

Model Equation
Parameter

p-value r2 adj-r2

S1

M1.1 y = -9.974 + 12.508 × season*** + 27.798 × ndvi** - 11.611 ×pine 0.0013 0.1862 0.1541

M1.2 y = -16.516 + 0.223 × temp*** + 17.829 × ndvi+ 5.789 × hardwood 0.0035 0.1626 0.1295

M1.3 y = 5.875 (null model) - - -

M1.4 y = -21.049 + 20.571×season** + 0.133 ×elv+ 25.966 × ndvi** 0.0014 0.1847 0.1526

M1.5 y = -11.095 + 0.204 × temp*** + 18.700 × ndvi* 0.0033 0.1373 0.1149

S2

M2.1 y = -14.534 + 22.483 × hardwood* + 0.439 ×ecotone* 0.0377 0.1478 0.1062

M2.2 y = -14.534 + 22.483 × hardwood* + 0.439 ×ecotone* 0.0377 0.1478 0.1062

M2.3 y = 3.254 + 21.235 × ndvi 0.0869 0.0682 0.0460

Figure5: A sampleLIDARpoint cloud illustratesthe landscapeof RockefellerParkPreservewith color indicatingaltitude values(pointswith warmer colors
havehigheraltitude valueswhereaspointswith coldercolorshavelower altitude values). LIDARdatawasloadedinto SAGAGISandprocessedat 1m spatial
resolution.

Figure6: LIDARdatawasusedto produceraster imageswherethe environmentaldatacouldbe extractedbasedon the locationof samplingtransects. (left)
DigitalTerrainModel (DTM,presentedwith hillshading) wascalculatedonly from groundpoints in order to obtain digital elevationof the studyarea; (right)
producing potential solar radiation raster maps dependson a variety of solar and atmosphericparametersincluding sun hour, samplingdate (which
determinesthe sun zenith on specificsamplingdate), atmospherictransmissivity. Primaryinput for computingsolar radiation is the digital surfacemodel
(DSM)whichdepictscharacteristicsof earth surfaceandcouldbecalculatedfrom LIDARdata. LIDARprocessingwasdoneby usingSAGAGISlibraries.

Figure7: Thefirst implementationof NAIPremote sensingimages(left) is to computenormalizeddifferencevegetationindex(NDVI) usingits red andnear
infraredchannelsbasedon the formula:
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NDVIvalue(right), rangingfrom -1 to 1, is an indicator for the greennessof vegetation. Areawith NDVIvalueҖ0 indicatenon-vegetationand viceversa.
Areawith NDVIvaluescloseto 1 suggestsdenseandvigorouslygrowingvegetation. Comparingwith Landsatsatelliteimagery(30m spatialresolution),NAIP
imageis of 1m spatialresolutionandtherefore it is ableto reveala lot more detailedinformation under tree canopy. In this study,NDVIraster imageswere
calculatedusingbandalgebralibrary in ArcGIS.

Figure8: In addition to calculatingNDVIvalues,the secondimplementationof NAIPimagewasthe landcoverclassification. Dueto the highspatialresolution
of NAIPimagery,it is simplefor usersto visuallyidentify landcoverfrom the image. (left) Over50 polygonswere createdmanuallyastrainingdataseton the
NAIPimagefor eachpre-identified land cover classrespectively. (right) Selectingtraining dataset, land cover classificationand accuracyassessmentwere
performed multiple times in ArcGISin order to optimize outputs. (Overallaccuracyof land coverclassification: CaumsettStatePark= 89.88%, Connetquot
RiverStatePark= 92.79%, RockfellerParkPreserve=97.08%, FireIslandNationSeashore= 85.71%.)

Tick Survey

Regression Analysis

Figure9: With the classifiedmap,coveragewith respectto landcoverclassweresummarizedby aggregatingcorrespondingrastercellswithin eachtransect.
In addition, the classifiedmap alsowasusedto computethe length of ecotone(addressesthe boundariesbetweentwo different biologicalcommunities).
(left) first stepwasto overlaya polygon(with 5m × 5m squaresrepresentingsamplingtransects)feature layerto the classifiedmap(rasterlayer); (right) the
polylineswithin transectswere usedto approximatethe forest boundaries,alsoknownasthe ecotones.

Table 1: Regressionmodelswere constructedwith respect to different temporal scalesbecausetick population (abundance)and activity are subject to
seasonalchanges. In addition, predictor variableswere reducedin eachcandidatemodel usinga stepwisealgorithm basedon their AICvalues. In first
scenario(S1) where modelswere built involvingthe transectssurveyedacrossall seasons,tick numbersappearto havesignificantcorrelationwith season,
surfacetemperature,and normalizeddifferencevegetationindex,the variablesthat may significantlyvary acrossseasons. Additionally,model coefficients
revealthat it maybe more likely to observehigherquestingtick populationin the areaswith warmersurfacetemperatureandhigherNDVIvalues. In stark
contrast,secondscenario(S2) only took into accountthe transectssurveyedwithin singleseason,duringwhichseasonalvariablesareusuallyconsistent. Asa
result,modelM2.2 ignoringseasonalvariablessuggeststhat there is positivecorrelationbetweendeer tick activity and localhardwoodcoverage,aswell as
ecotonallength.

Figure 2:Expanding geographic distribution of black-legged tick 
habitat in the United States. (Image from https://www.cdc.gov/)

Asa cold-bloodedterrestrial species,the black-leggedticksspendsover 90%
of its life time (usually 2 years) off-host struggling with environmental
stressorsto survive. Thespatial-temporalpattern of questingactivity is highly
regulated by a wide variety of environmental factors. Basedon this, tick
ecologyis usually studied by analyzinga certain number of environmental
variables.

Figure 1:An adult female black-legged tick questing for host. (Image 
from https://www.rosepestcontrol.com/)
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