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Sharp Interface

In classical hydrodynamics, interface is often represented as a discontinuity of
density and tangential velocity. (requires jump conditions– interface
conditions)interface description

•  sharp (Young, Laplace):
• surface of zero thickness
• discontinuous physical quantities
• hydrodynamics of bulk fluids coupled with boundary conditions
• interfacial tension is a jump in stress
• surface tracking of free boundary

•  diffuse (Gibbs, van der Waals):
• surface of non-zero thickness
• smooth transition of physical quantities
• hydrodynamics is based on thermodynamic principles
• interfacial tension is a distributed stress
• surface capturing

Monday, September 26, 11

Leads to singularities when the interfacial thickness becomes comparable to
the radius of curvature or the distance between surfaces. (e.g. when material
surfaces collide.)

Real fluids exhibit partial miscibility. They mix on the interface!



Diffuse Interface approach

interface description

•  sharp (Young, Laplace):
• surface of zero thickness
• discontinuous physical quantities
• hydrodynamics of bulk fluids coupled with boundary conditions
• interfacial tension is a jump in stress
• surface tracking of free boundary

•  diffuse (Gibbs, van der Waals):
• surface of non-zero thickness
• smooth transition of physical quantities
• hydrodynamics is based on thermodynamic principles
• interfacial tension is a distributed stress
• surface capturing

Monday, September 26, 11

According to the thermodynamics of “immiscible” fluids, there is a range of
concentrations where the free energy is concave and homogeneous states are
unstable (e.g. Landau & Lifshitz 1958).

An interface between two immiscible fluids can then be described as a layer
where thermodynamically unstable mixtures are stabilized by weakly non-local
(gradient) terms in the energy, an idea which can be traced to van der Waals
(1894).

This approach was first constructively used by Cahn & Hilliard (1958) in the
context of a purely diffusional problem. In its original form, the Cahn–Hilliard
(CH) equation.



The Cahn-Hilliard Equation (phase separation)

The Cahn-Hilliard equation in mixed formulation (Cahn, Acta Metall., 1961):

∂tu = ∆w in Ω,

w = ε−1u3 − ε−1u − ε∆u in Ω,

∂nu = ∂nw = 0 on ∂Ω,

where ε > 0 is the interfacial width parameter.

Mixed weak formulation: find u ∈ L∞
(
0,T ;H1(Ω)

)
, ∂tu ∈ L2

(
0,T ;H−1(Ω)

)
and

w ∈ L2
(
0,T ;H1(Ω)

)
such that

〈∂tu, χ〉+ (∇w ,∇χ) = 0 ∀χ ∈ H1(Ω),

ε−1
(
u3 − u, ϕ

)
+ ε (∇u,∇ϕ)− (w , ϕ) = 0 ∀ϕ ∈ H1(Ω),

for almost all t ∈ (0,T ). Note that BCs are natural.



Energy Dissipation and Mass Conservation (PDE level)

Consider the typical Cahn-Hilliard energy (Cahn and Hilliard, J. Chem. Phys., 1957)

E (u) =

∫
Ω

{
1

4ε
u4− 1

2ε
u2 +

1

4ε
+
ε

2
|∇u|2

}
dx.

The chemical potential is

w = δuE = ε−1u3− ε−1u − ε∆u.

Weak solutions dissipate the energy at the rate

E
(
u(s)

)
+

∫ s

0

‖∇w‖2
L2 dt = E

(
u(0)

)
,
(
dtE (u) = −‖∇w‖2

L2

)
.

Mass conservation:∫
Ω

(u(x, t)− u(x, 0)) dx = 0, a.e. t > 0,

(
dt

∫
Ω

u(x, t) dx = 0

)
.



Spinodal Decomposition: Energy Competition

E (u) =

∫
Ω

{
1

4ε
u4− 1

2ε
u2 +

1

4ε
+
ε

2
|∇u|2

}
dx.



Spinodal Decomposition
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t = 180 t = 400
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Modified Cahn-Hilliard Equation Models



A Modified Cahn-Hilliard (MCH) Equation

A model for binary polymer dynamics (Ohta & Kawasaki, Macromolecules, 1986;
Choksi et al., SIADS, 2011):

∂tu = ∆w−θ (u − u0) in Ω,

w = ε−1u3 − ε−1u − ε∆u in Ω,

∂nu = ∂nw = 0 on ∂Ω,

where ε > 0, θ ≥ 0, u0 := 1
|Ω|
∫

Ω
u(x, 0)dx.

Mixed weak formulation: find u ∈ L∞
(
0,T ;H1(Ω)

)
, ∂tu ∈ L2

(
0,T ;H−1(Ω)

)
and

w ∈ L2
(
0,T ;H1(Ω)

)
such that

〈∂tu, χ〉+ (∇w ,∇χ) + θ (u − u0, χ) = 0 ∀χ ∈ H1(Ω),

ε−1
(
u3 − u, ϕ

)
+ ε (∇u,∇ϕ)− (w , ϕ) = 0 ∀ϕ ∈ H1(Ω),

for almost all t ∈ (0,T ).



Energy Dissipation and Mass Conservation

Solutions of the MCH equation dissipate the energy

E (u) =

∫
Ω

{
1

4ε
u4− 1

2ε
u2 +

ε

2
|∇u|2

}
dx +

θ

2
‖u − u0‖2

H−1

at the rate

E
(
u(s)

)
+

∫ s

0

‖∂tu‖2
H−1 dt = E

(
u(0)

)
,
(
dtE (u) = −‖∂tu‖2

H−1

)
.

Mass conservation: For a.e. t > 0,

0 =

∫
Ω

(u(x, t)− u(x, 0)) dx =

∫
Ω

(u(x, t)− u0) dx .



Spinodal Decomposition and Arrested Coarsening

t = 0.002, θ = 15000.0

t = 0.01, θ = 15000.0 t = 0.01, θ = 5000.0

t = 0.002, θ = 5000.0 t = 0.002, θ = 0.0

t = 0.01, θ = 0.0

t = 0.02, θ = 15000.0 t = 0.02, θ = 5000.0 t = 0.02, θ = 0.0

Here u0 = −0.1, Ω = (0, 8)2, ε = 0.02, h = 8
512 , τ = 2× 10−5.



Crystallization and Phase-Field-Crystal-type Dynamics
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Crystallization and Phase-Field-Crystal-type Dynamics

u0 = −0.3, θ = 15000.0, Ω = (0, 8)2, ε = 0.02, h = 8
512 , τ = 2× 10−5.



Mathematical Ingredients

Mass transport (conservation of mass)

change in mass = (transport (in) of mass) + (′′creation′′ of mass)

∂ci
∂t

+∇ · (uci ) = ∇ · (Di∇ci )− ri , (solvent),

∂

∂t
Xj +∇ · (ujXj) = ∇ · (κj∇Xj) + gj , (biomaterial).

Force balance (conservation of momentum)

0 = (inertial force) + (transport of momentum) + (viscous force)

+(elastic force) + (cohesive force) + . . .

needed to determine velocities u, uj .

all in a moving bdry/interface problem (can be complicated!).



Model with nutrient diffusion & advective velocity

∂tu = 4µ+ S −∇ · (u ~U), in ΩT := Ω× (0,T )

where, S = ηλeu − λcu, λe > 0, λc > 0

µ = f (u)− ε24u

4η = ληuη with η = 1 on ∂Ω

~U +∇Π = −λu∇µ, Π: pressure = 0 on ∂Ω Darcy equation

∇ · ~U = S Mass conservation

u = u0, on Ω× {0}
∂nu = ∂nµ = 0, on ∂ΩT := ∂Ω× (0,T )

f = F ′, where F (u) =
1

4
u2(1− u)2.



Heterogeneous Living Materials

Phase separation of binary fluid in “Brinkman” porous medium. (CH-B):

∂tψ = ∇ · (εM(ψ)∇w − uψ) ,

−∇ · [ν(ψ)D(u)] + η(ψ)u = −∇p − λψ∇w ,
∇ · u = 0.

ψ = Xj for some j , M: mobility, u: fluid velocity, D(u) = ∇u +∇uT , p: fluid pressure,
λ ≥ 0: excess surface tension, ν( · ) ≥ 0: fluid viscosity and η( · ) ≥ 0: permeability.
η ≡ 0, equation is called the Cahn-Hilliard-Stokes (CH-S) equation.

ν ≡ 0, obtain Cahn-Hilliard-Hele-Shaw (CH-HS) equation.

Model growth: ∇ · u = S and ∂tψ = ∇ · (εM(ψ)∇w − uψ) + S .

Figure: A 6-level mesh adaptive Discontinuous Galerkin Finite Element simulation of
growth. Aristotelous et al., IMA J. Numer. Anal. (2015)



Numerical Solution of the Models
Challenges:

Nonlinearities

Fourth Order Operators Generate Ill-conditioned Systems

Steep Gradients Along the Interfaces, (ε << diam(Ω))

Long Time Dynamics Require High Order Stable Schemes

3D Formulation and Implementation



Why DGFE Methods for Spatial Discretization?

1 Result in dimension independent formulations.

2 Can easily handle boundary conditions and curved boundaries.

3 It creates matrices that have well structured blocks, so they are easier to
handle.
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22

132314

21
Ah

Figure: Block structure of the stiffness matrix.

4 Inter-mesh operations, (e.g. projections from a locally refined mesh to a coarse
mesh), are entirely local, important in the multigrid setting.

5 Highly parallelizable algorithms



DGFE Triangulations

DG allows the use of more flexible meshes that have hanging nodes.
Let Th = {K} be a (not necessarily conforming) family of triangulations of Ω,
where 0 < h < 1, h = maxK∈Th hK , hK = diam (K ).

Assume that Th satisfies:

1 The elements (cells) of Th satisfy the minimal angle condition

2 Th is locally quasi-uniform. That is, if two cells K and K ′ are adjacent, then
hK ≈ hK ′ .

Define
E I := set of all interior edges/faces of Th.



DGFE Function Spaces

Broken Sobolev spaces:

Hm(Th) :=
∏
K∈Th

Hm(K ) =
{
v ∈ L2(Ω)

∣∣ v |K ∈ Hm(K )
}
.

(Pic by Dr. Thomas Lewis, UNCG)

Broken polynomial spaces:

Vh := S (Th) := Pq(Th) :=
∏
K∈Th

Pq(K ) =
{
v ∈ L2(Ω)

∣∣ v |K ∈ Pq(K )
}
.

E.g. for m = 2, clearly

S (Th) ⊂ H2 (Th) ⊂ L2(Ω),

S (Th) 6⊂ H2(Ω), S (Th) 6⊂ H1(Ω).



SIPDG Bilinear Form and Broken Norm

For all u, v ∈ H2 (Th), define the symmetric semi positive definite bilinear form

αh(u, v) :=
∑
K∈Th

(∇u,∇v)K −
∑
e∈E I

(
〈{∂nu}, [v ]〉e+〈[u], {∂nv}〉e

)
+
∑
e∈E I

γh−1
e 〈[u], [v ]〉e ,

where γ is a positive penalty parameter.

Consistency: If u ∈ H2(Ω), ∂nu = 0 on ∂Ω,

− (∆u, v) = αh(u, v) , ∀ v ∈ H2 (Th) .

For all v ∈ H2 (Th) define

|||v |||2 :=
∑
K∈Th

(∇v ,∇v)K +
∑
e∈E I

(
2
γ

he
|[v ]|2e +

he
γ
|{∇v}|2e

)
.



Mixed SIP-DGFE Convex Splitting Scheme
for the MCH

Aristotelous, A. C., O. Karakashian, and S.M. Wise, A Mixed Discontinuous Galerkin,

Convex Splitting Scheme for a Modified Cahn-Hilliard Equation and an Efficient Nonlinear

Multigrid Solver, DCDS-B (Vol. 18, No. 9) November 2013, pp. 2211–2238.



Mixed SIP-DGFEM-CS Scheme

Fully discrete convex splitting scheme

For any 1 ≤ m ≤ M, given um−1
h ∈ S (Th) find umh ,w

m
h ∈ S (Th) such that

(δτu
m
h , χ) + αh(wm

h , χ) + θ (umh − u0, χ) = 0, ∀χ ∈ S (Th) ,

ε−1
(

(umh )3−um−1
h , ϕ

)
+ εαh(umh , ϕ)− (wm

h , ϕ) = 0, ∀ϕ ∈ S (Th) ,

where
u0
h := Phu0.

Ph : H2 (Th)→ S (Th) is the elliptic projection:

αh(Phu − u, χ) = 0, ∀χ ∈ S (Th) , (Phu − u, 1) = 0.

It is easy to see that the scheme is discretely mass conservative:

(umh − u0, 1) = 0, ∀ m ≥ 1.



Results of the Analysis of the Scheme



Unconditional Unique Solvability

Theorem (Aristotelous et al., 2013)

The mixed SIP-DGFE-CS scheme is uniquely solvable for any mesh parameters τ
and h and for any phase parameters θ ≥ 0 and ε > 0.

Proof.

Set umh = vm
h + u0, vm

h ∈ S̊ (Th), m = 0, . . . ,M. For all vh ∈ S̊ (Th), define the
functional

Gh(vh) :=
τ

2β

∥∥∥∥βvh − vm−1
h

τ

∥∥∥∥2

−1,h

+
1

4ε
‖vh + u0‖4

L4 +
ε

2
|||vh|||2α

−1

ε

(
vm−1
h + u0, vh

)
, β := 1 + τθ.

Gh is strictly convex and coercive on the linear subspace S̊ (Th). Consequently, Gh

has a unique minimizer, call it vm
h ∈ S̊ (Th).



Unconditional Energy Stability

Lemma (Aristotelous et al., 2013)

Let umh ,w
m
h ∈ S (Th) denote the unique solution of the mixed SIP-DGFE-CS

scheme. Then the following energy law holds for any τ, h > 0 and any θ ≥ 0 and
ε > 0:

Eh

(
u`h
)

+τ
∑̀
m=1

‖δτumh ‖
2
−1,h+τ 2

∑̀
m=1

{
ε

2
|||δτumh |||2α+

1

4ε

∥∥δτ (umh )2
∥∥2

L2

+
1

2ε
‖umh δτumh ‖

2
L2 +

1

2ε
‖δτumh ‖

2
L2 +

θ

2
‖δτumh ‖

2
−1,h

}
= Eh

(
u0
h

)
, ∀ 0 ≤ ` ≤ M,

where

Eh(uh) :=
1

4ε

∥∥∥(uh)2 − 1
∥∥∥2

L2
+
ε

2
|||uh|||2α +

θ

2
‖uh − u0‖2

−1,h .



Discrete Energy Dissipation (Crystallization)
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Unconditional Uniform Bounds on the DG Solution

Lemma (Aristotelous et al., 2013)

Let umh , w
m
h ∈ S (Th) be the unique solution of the mixed SIP-DGFE-CS scheme.

Then the following estimates hold for any h, τ > 0:

max
0≤m≤M

[
ε|||umh |||2α +

1

4ε

∥∥∥(umh )2 − 1
∥∥∥2

L2
+
θ

2
‖umh − u0‖2

−1,h

]
≤ C ,

max
0≤m≤M

(
‖umh ‖

2
L2 + |||umh |||2α

)
≤ C ,

τ

M∑
m=1

‖δτumh ‖
2
−1,h ≤ C ,

for some h, τ , and T-independent constant C > 0.



Convergence

Theorem (Aristotelous et al., 2013)

Let p ≥ 1 and 1 ≤ s ≤ p. Suppose u0 ∈ Hs+1(Ω) and (u,w) is a weak solution to
the Modified CH equation, with sufficient additional regularities. Then, provided
0 < τ < τ0, for some τ0 sufficiently small,

‖u − uh,τ‖L∞(0,T ;H1(Th)) + ‖w − wh,τ‖L2(0,T ;H1(Th)) ≤ C (T )(hs + τ),

for all 1 ≤ s ≤ p, for some C (T ) > 0 that is independent of τ and h.



Numerical Convergence Tests



Broken H1 Convergence Test: Quadratic Elements

Broken H1 Convergence Test: q = 2
Analytic solution:

u(x, y , t) = x2(1− x)2y2(1− y)2 cos(t)

τ = h2 τ = h

h |||u(·,T )− uM
h ||| rate |||u(·,T )− uM

h ||| rate

1/2 3.122755× 10−04 — 5.201555× 10−04 —

1/4 7.389662× 10−05 2.079239103 2.426696× 10−04 1.099949591

1/8 1.835997× 10−05 2.008944676 1.195414× 10−04 1.021483045

1/16 4.581559× 10−06 2.002653198 5.945521× 10−05 1.007635202

1/32 1.144499× 10−06 2.001122396 2.966275× 10−05 1.003150883

Table: T = 1.5, ε = 0.5, θ = 0, Ω = (0, 1)2. The global error at T measured in ||| · ||| is
expected to be O(τ = h2) + O(h2) (quadratic convergence) and O(τ = h) + O(h2) (linear
convergence ), respectively. The data above are consistent with these predictions.



Second Order in Time CS for the CH

Based on Crank Nicolson formulation

(see e.g. A. Diegel, et al., IMJNA, 2016 for standard FE),

ψk+1 − ψk = τ∆wk+ 1
2 ,

wk+ 1
2 =

1

2

[(
ψk+1

)2
+
(
ψk
)2
]
ψk+ 1

2 − ψ̃k+ 1
2 − ε2∆ψ̂k+ 1

2 ,

where

ψk+ 1
2 := 1

2ψ
k+1 + 1

2ψ
k , ψ̃k+ 1

2 := 3/2ψk − 1
2ψ

k−1 and ψ̂k+ 1
2 := 3/4ψk + 1/4ψk−1.

Based on BDF formulation

(see Yan et al., Commun. Comput. Phys., 2018 for standard FE),

3ψk+1 − 4ψk + ψk−1 = 2τ∆wk+1 ,

wk+1 =
(
ψk+1

)3 − 2ψk + ψk−1 − ε2∆ψk+1 − τA∆(ψk+1 − ψk) ,

where A ≥ 1/16 for stability.

Note: Both schemes require an initialization step.



BDFCS2-SIP-DG-FE Convergence Test: Linear Elements

2D Analytic solution: u(x , y , t) = cos(πx) cos(πy) exp(−t) in (0, 1)2 using
ε2 = 0.05 and a linear path τ = 0.25h. Error is of order O(h2 + τ 2) = O(h2)

Note: SIP-DG-FE theoretical numerical analysis of both schemes is in progress.



3D Spinodal Snapshot using the BDFCS2-SIP-DG-FE

In (0, 1)3 using ε2 = 0.0004, linear elements and uniform grid 30× 30× 30.

Note: Observe that the mesh size needs to be finer for better resolution of the
interface. In 3D uniform mesh is very costly! Needs mesh adaptivity.



Spatially Adaptive Discontinuous Galerkin
Methods for a Growth Model

Aristotelous, A. C., O. Karakashian, and S.M. Wise, Adaptive, Second-Order in Time,
Primitive-Variable Discontinuous Galerkin Schemes for a Cahn-Hilliard Equation with a

Mass Source
(IMA J. Num. Anal.) 2015

See also Feng and Karakashian, Math of Comp, 2007.



Simplified Growth Model

Cahn-Hilliard Equation with Nonlinear Mass Source (Cohen & Murray, J. Math.
Biol., 1981; Ochoa & Robles, Kinam Rev. F́ıs., 1983; Wise et. al., J. Theor. Biol.,
2008; ACA, IMAJNA 2015)

∂tu = D∆w +
1

ε
σ(u),

w = ε−1u3 − ε−1u − ε∆u,

(1)

where, σ(u) := λg (u − 1)2(u + 1)2 − λd
u + 1

2
.

This is a phenomenological model of biological growth, in particular solid
tumor growth.

Models cell-cell adhesion, growth and necrosis, without considering
mechanical response due to tissue growth.

Similar to the MCH equation, at the PDE level, this model has an energy
which its solutions dissipate.



Reason for Adaptivity
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Adaptive Implementation

Figure: Left: Initial mesh used to generate the adaptive multilevel meshes for the
simulations. The domain is a dodecagon with “radius” equal to 1.6. Right: Resolved
ellipse initial profile.



Time Stepping and Adaptivity Setup

Let Im := (tm−1, tm], m = 1, . . . ,M be a partition of [0,T ] and
τm := tm − tm−1.

At certain times tm, the spatial mesh may be changed T m−1
h → T m

h via a
process of refinement and coarsening based on a marking strategy.

T
m-j
h

T
m
h

K K K

K ‘ K ‘ K ‘2

K ‘1
K ‘3
K ‘4

Type I Type IIType I

Refine Coarsen

Figure: Examples of type I and type II cells in a two-dimensional mesh.



Error Estimates (Accounting Mesh Adaptivity)

Theorem (Aristotelous et al. 2015)

Let u solves the tumor model with sufficient regularity assumptions and let the fully
discrete approximations {Um}Mm=1 with f , σ replaced by fL, σL and U0, U1 (chosen
appropriately). Then for τ and h sufficiently small the following estimate holds for
the error em := u(tm)− Um

max
1≤m≤M

‖em‖ ≤ c eCεT
(
τ 2 + hr +Nc max

2≤m≤M
‖[wm−1

h ]‖
)
, (2)

where the constant Cε is proportional to 1
ε3 and Nc denotes the total number of

times where the jumps [wm−1
h ] are nonzero.

There exists a constant c0 such that if also

h
− d

2

min

(
τ 2 + hr +Nc max

2≤m≤M
‖[wm−1

h ]‖
)
≤ c0,

then the estimate (2) also holds for the unmodified schemes.



Inverse Estimate Marking Strategy

Lemma

There exists a constant c depending only on the minimum angle of K and r such
that

‖uh‖j,K ≤ ch−jK ‖uh‖K ∀uh ∈ Pr−1(K ), j = 1, . . . , r − 1.

We have the following,

cK := hK
||∇uh||K

||uh + const||K
≤ C .

Adding a constant function on uh to avoid division by zero.

if cK ≤ ΘcC then coarsen.

if cK ≥ ΘRC then refine.

See J. L. Bona, V. A. Dougalis, O. A. Karakashian, and W. R. McKinney,1990.



Adaptive DG Computations of Growth

(Loading tumor.avi)

Parameters: ε = 0.0125, D = 0.25, λg = 70 and λd = 23.


tumor.avi
Media File (video/avi)



Computational Gain
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Figure: Adaptive run for growth model.



Solution Sinking

0.74	
  

0.76	
  

0.78	
  

0.8	
  

0.9	
  

Figure: Contour lines for the solution at t = 19500τ for the simulation depicted in the last
two figures. Shown are the 5 contours 0.74, 0.76, 0.78, 0.8 and 0.9.



An Adaptive Full Approximation Storage
(AFAS) Multigrid Solver

AFAS/FD mixed CH: S.M. Wise, J.S. Kim, and J.S. Lowengrub, JCP, 2007.

Uniform Mesh FAS/FD mixed CH: J.S. Kim, K. Kang, and J.S. Lowengrub, JCP, 2004.



Nonlinear Algebraic Equations

The nonlinear algebraic system resulting from the convex splitting scheme, after
dropping the superscripts, is

(1 + τθ)Mhuh + τAhwh = suh,

εAhuh + ε−1Qh(uh) uh −Mhwh = swh ,

where the source terms, sφh and sµh , involve the previous-time solution uk
h .

Ah is the (fine-level) symmetric stiffness matrix: the (i , j) entry is αh(uh,j , uh,i ).

Qh(vh) is the symmetric positive semidefinite matrix whose (i , j) entry is(
v2
h uh,j , uh,i

)
.

Mh := Qh(1) is the mass matrix.



(Non-linear) Block Smoothing Strategy

The vectors u`t , w`
t are updated element (triangle)-wise by the following block

Gauss-Seidel smoothing strategy: for every t = 1, . . . , nh, for ` = 1, . . . , `max, find
u`t and w`

t , such that

(1 + τθ)Mt,tu
`
t + τAt,tw

`
t =sut − τ

t−1∑
t′=1

At,t′w
`
t′

− τ
nh∑

t′=t+1

At,t′w
`−1
t′ ,

[
εAt,t + ε−1Qt,t

(
u`−1
t

)]
u`t −Mt,tw

`
t =swt − ε

t−1∑
t′=1

At,t′u
`
t′

− ε
nh∑

t′=t+1

At,t′u
`−1
t′ .



Adaptive FAS Multigrid: The Stiffness Matrix
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Figure: A two-level hierarchical mesh and corresponding stiffness matrices represented in
element-wise block form.

ΩS: the union of triangles 16 through 23 from Th. (The new highest level triangles)
ΩR: the union of triangles 12 through 23 in Th (the grey region).

For the sake of efficiency, smoothing is preformed only on ΩS;
residuals are calculated on ΩR.



Efficient Multigrid Solvers: h-Independence
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Current work on CH-B: Second Order in Time CS

Semi-discrete in time 2nd-order convex splitting scheme for the CH-B equation
(formulation in Collins et al., 2013),

ψk+1 − ψk = τ∇ ·
(
εM

(
ψ̃k+ 1

2

)
∇wk+ 1

2 − ψ̃k+ 1
2 uk+ 1

2

)
,

wk+ 1
2 =

1

2ε

[(
ψk+1

)2
+
(
ψk
)2
]
ψk+ 1

2 − 1

ε
ψ̃k+ 1

2 − ε∆ψ̂k+ 1
2 ,

−∇ ·
(
ν
(
ψ̃k+ 1

2

)
D
(

uk+ 1
2

))
+ η

(
ψ̃k+ 1

2

)
uk+ 1

2 = −∇pk+ 1
2 − λψ̃k+ 1

2∇wk+ 1
2 ,

with ∇ · uk+ 1
2 = 0.

Note: For first order convex splitting numerical analysis and implementation see for
FD Collins et al., Communications in Computational Physics, 2013 and Guo,
Ruihan and Xu, Yan, Journal of Computational Physics, 2015 for LDG method.



Work in Progress for the CH-B

Preliminary Results (not published yet)

This semi-discrete in time and fully discrete SIP-DG-FE CS2 scheme for any time
step τ > 0 and for any τ > 0, h > 0 respectively is uniquely solvable, energy stable
(E (uk+1) ≤ E (uk)) and mass conservative, ((uk+1, 1) = (uk , 1)) for all k ≥ 0.

Note

The above results and theoretical error estimates for a fully discrete SIP-DG
formulation is work in progress along with the full adaptive code
implementation.

The methods under study include stabilized DG methods using equal-order
spaces for the pressure space and the velocity space.

A CS2 BDF scheme is in development.

Goal: apply the developed computational tools to more detailed models.



Microbial Biofilms1

Figure: Left: Stages of the biofilm life cycle, courtesy of the Montana State University
Center for Biofilm Engineering, P. Dirckx. Right: Microbial structures in a mixed-species
photosynthetic mat, Mushroom Spring, Yellowstone National Park.

1Isaac Klapper and Jack Dockery, Mathematical Description of Microbial Biofilms, SIAM
Review (2010)
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