

Corrosion Resistant Weld Overlays for Pipelines, Oil and Gas, and Petrochemical Installations

Timothy Babyak, William Siefert, Andrew Cassese Assoc. Prof. Boian Alexandrov, Dr. Jorge Penso, Prof. Gerald Frankel

Background

Problem: Pipeline failure due to corrosion. (top right image)

Relevant Industries: Pipeline, Oil and Gas, Petrochemical.

Current Solution: Apply corrosion-resistant nickel or stainless steel weld overlay to inner diameter of pipe using HW-GTAW or similar process. (bottom right image)

Literature: Cold Metal Transfer (CMT) process produces weld overlays which corrode up to ten times slower than overlays produced with GTAW, with up to four times higher deposition rates.

Industry Need: Majority of research into weld overlays produced with the CMT process has been done solely with respect to nuclear applications, need for process optimization directed towards oil and gas applications.

Research Question: Can more efficient weld overlays be produced using the CMT process without sacrificing

GTAW

rward-Looking Energy, AREVA, 2015, uddcomb.se/en/wel

Objective

Results & Discussion

Reduction in production cost, extension of service life, and improvement of structural integrity of weld overlays of corrosion-resistant alloys in oil and gas pipelines.

Approach

CMT Setup

quanty:

- Filler Metal: Ni-686 ERNiCrMo-14 0.040" Wire
- Filler Metal: Ni-825 ERNiFeCr-1 0.045" Wire
- Base metal: X65 Steel
- Fronius CMT Advanced 4000 MV R Power Supply
- Fronius RCU 5000i Pendant
- Yaskawa Motoman MA1400 Robotic Arm

Initial Weld Design of Testing Experiments

Fractional Factorial Design of Experiment

Fractional Factorial: (2 levels^4 factors)*(2 replicates) + (4 for linearity check) = 36 samples

Metallurgical Characterization/Modeling

- **Metallurgical characterization:** measure bead geometry to validate predicted optimal parameters
- **Optical microscopy:** detect flaws, analyze microstructure for swirls and planar growth region
- Hardness Testing: determine whether PWHT is necessary **EDS:** measure interdendritic spacing as well as dilution across fusion boundary

ThermoCalcTM computational modeling: predict solidification ranges and partitioning coefficients

Comparison

- **Processes:** CMT, HW-GTAW
- Filler metals: Ni-686, Ni-825
- **Factors:** defects, deposition rate, dilution, hardness, microstructure, corrosion resistance

Conclusions

Optimized CMT parameters:

- About 5% dilution or less (more than 4x lower than HW-GTAW)
- Deposition rate of 7.88 lbs/hr (more than 3x higher than HW-GTAW)
- Extremely narrow planar growth region with very low swirl density
- Fine microstructure with dendritic spacing of 4.3-5.1 micrometers (more than 3x lower than HW-GTAW)
- As-welded HAZ with average hardness below 250 $HV_{0.1}$ (would not require PWHT as HW-GTAW would)

Future Work

In-Depth Analysis

- EDS: Line scans across fusion boundary to determine distance from fusion boundary where Fe content reaches <5%
- Thermocalc Modeling:
 - Psuedo-Binary Phase Diagram: Between 686-X65 and 825-X65 to determine solidification range and susceptibility to solidification cracking
 - Partition Coefficients: Determine dendritic core and interdendritic composition
- Mechanical Testing: Bend Testing, Peel Testing: make sure welds will perform in service

Future Work: Corrosion

- Corrosion testing of samples
 - CPT immersion
 - CPT electrochemical
 - PDP Potentio-dynamic Polarization

Boian Alexandrov and Jorge Penso for superior guidance and information relating to topic

