
METHODS

We used the species distribution modelling program Maxent3 to examine likely 
range shifts in response to changes in climate conditions from the recent past 
(1970-2000) to projected 2050 (RCP 8.5, representing business-as-usual projections). For 
presence points, we randomly generated 500 points within a region defined by 5-min raster 
cells with > 30 ha of rain-fed cotton harvested (MIRCA20002). 

We used 19 bioclimatic variables 
acquired at 5 min resolution from 
Worldclim4 (baseline) and CCAFS5 
(RCP 8.5, 2050). Ten models used by 
de Sherbinin et al6 were averaged for 
input future model data. Twenty 
percent of points were reserved from 
training input for model testing.

INTRODUCTION

Species distribution models give important insights into likely range 
shifts for species, ecosystems, and biodiversity in response to climate 
change. This approach has also, to a lesser extent, been used to project 
climate impacts on agricultural production, in particular for pest species 
and key food crops. Cotton, which provides critical income for 
small-holder farmers in West Africa, has received relatively little 
attention, despite its importance in this fast-growing, agrarian region. 
West Africa has begun to experience increasing variability in precipitation; at the 
same time, the region has rapidly growing populations dependent on small-scale 
farming.1 Rainfed cotton is the principal income source for many farmers in this 
region of historically-reliable rainfall (fig. 1). Preliminary analysis indicated that 
among world cotton-producing regions, this region is likely to be among the most 
strongly affected by climate warming and shifts in precipitation regimes.
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Figure 2. cells with > 30 ha of rainfed irrigated cotton 
harvested (green; data ca. 20002) and randomly 
generated presence points within those cells (black dots).   

T Max T of 
warmest month

Annual mean Temperature

Precip seasonality

Mean T of coldest month

Figure 4: RCP 8.5 
Bio 12.

Figure 3: Baseline 
bio 12

RESULTS

The area suitable for rainfed cotton declines sharply in 2050 modelled conditions. 
Variables explained distribution well: AUC = 0.86 for training data and 0.85 for test data 
(fig. 3). The most influential bioclimatic factor in this region was seasonal precip, 
followed by growing temperature seasonality; both constrain northern and southern 
extents of the study area. Most states lost nearly all suitable growing area (fig. 4, 5).  

IMPLICATIONS

A species distribution modeling approach can provide insights into the effects of 
climate change on crops and agricultural communities. While farmers and crop 
breeders are innovative, climate limits are likely to constrain production, 
especially where capital or water for irrigation is limited. While adaptation of 
agriculture is a known need, changes found here point toward substantial shifts 
in production systems, possibly advantaging relatively capital-intensive, irrigated 
systems (if high temperatures allow crop growth). This could imply shifts regimes 
and ownership of production, with relatively higher vulnerability for smallholders.
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UNCERTAINTY

Assessing and communicating uncertainty in future models is an challenge for species 
distribution modelling, and projections should be interpreted with caution, even while they 
use the best available information.7 Maxent uses an information theoretic approach that 
takes a conservative approach to confidence, and the AUC indicates good confidence in 
model fit.3 In addition, while areas outside the range of input values should be interpreted 
with caution (red shading, fig. 6), these areas were generally outside of both observed and 
projected areas of high suitability. 

The greatest uncertainty in this approach lies in our inability to test 2050 conditions against 
observations. Consequently the model results here can be posited as an expected outcome 
of business-as-usual changes. Testing these expectations against production observations 
in future years is the only way to have clear certainty in model output.7 However, climate 
projections have often been observed to under-predict change.8 

Variable Variable Percent 
contribution

Permutation 
importance

Annual precipitation bio_12 60.1 22.7

Temperature seasonality 
(std dev)

bio_4 18.5 19.1

Precipitation of warmest quarter bio_18 7.9 9.3

Isothermality 
(diurnal range/annual range)

bio_3 4 25.6

Figure 1. Distribution of 
rainfed (top) and 
irrigated (bottom cotton 
harvested (data source: 
Portmann et al. 2010, 
MIRCA20002).   

Area harvested, 
ha/5 minute cell

Figure 4.
Suitability

1 = very suitable
0 = very unsuitable

Figure 3. ROC curve 

Figure 5. Count of cells classed for present purposes as “suitable” (suitability index values 0.66-1.0), “poor” (0.33 - 
0.66) or “unsuitable” (0 - 0.33), by state. These cutoff values are subjective and provisional. 

Figure 6: Values outside the 
range of training values. Areas in 
red (top) have values out of 
range and should be treated with 
caution. Primary variables 
outside of range are indicated 
(bottom).     
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