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Summary of findings

1. Introduction

Land cover types - We fouqd that the magnitude of ‘model improvement (i..e., i‘ncr‘eas‘es in R? and
B Open Water decreases in rSAC), after both spatial lag and error modeling, is significantly and

Developed, Open Space linearly a function of the SAC inherently possessed by water quality variables

[ 1:“:::::-;:'";*-':'1“ (1.e., response variables) (Fig. 5).
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Several studies 1n the hydrology field have reported differences in outcomes between models 1n
which spatial autocorrelation (SAC) 1s accounted and those in which SAC 1snot [1-3]. However,
the capacity to predict the magnitude of such differences 1s still ambiguous.
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Figure 1. Conceptualization of the main 1deas of the study (PC, principal components; OLS, Motan's 1 D O
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ordinary least squares; SAC, spatial autocorrelation). We quantified the inherent degree of SAC for each water quality parameter 10 All states combined a
. using Moran’s I function (Equation 1). |
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