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Introduction

Peripheral artery disease (PAD) is a common condition  
producing symptomatic ischemic leg pain with exertion 
(claudication).1 In diabetic individuals, this can be a particu-
larly malignant disease, with resting limb ischemia and non-
healing ulcers requiring amputation. There are currently  
no effective drugs to treat PAD in diabetes, leaving only  
surgical revascularization and interventional catheter- 
based approaches, and these can fail leading to limb loss. 
Developing an effective drug therapy to prevent or amelio-
rate the symptoms of PAD represents an unmet need.

The receptor for advanced glycation endproducts (RAGE) 
plays an important role in the development and progression 
of vascular disease. It is constitutively expressed in low lev-
els on smooth muscle cells and endothelial cells in vascular 
endothelium and increases in response to hyperlipidemia and 
hyperglycemia.2–5 In diabetics, increased RAGE expression 
attenuates the angiogenic response to tissue hypoxia and 
thereby contributes to long-term complications including 
poor collateral formation in the lower extremities, poor 
wound healing, and ulcers.4 Mechanisms for this adverse 
effect of RAGE include maladaptive regulation of vascular 
endothelial growth factor (VEGF) ligand signaling, impaired 

release of endothelial progenitor cells from the bone marrow, 
and defective function of the released cells.6,7

We developed an antibody that binds a unique peptide 
on the extracellular domain of RAGE for radiolabeling as 
a tool to localize and quantify RAGE expression in live 
animals.8–10 We demonstrated increased RAGE expression 
in the ischemic hind limbs of diabetic mice compared to 
control legs and to ischemic hind limbs in non-diabetic 
mice.8–10 In a human pathology paper, Ritthaler et al. in 
1995 documented prominent enhancement of endothelial 
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RAGE expression in small and medium size arteries in 
patients with occlusive peripheral vascular disease both 
with and without diabetes.11

For imaging, microgram quantities of antibody are 
linked to the radionuclide and this amount has no biologi-
cal effect. We hypothesized that if the anti-RAGE anti-
body has blocking properties it may have therapeutic 
potential. After positive results from blocking experi-
ments in cell culture we designed a placebo-controlled 
treatment study in live animals to test the hypothesis that 
pretreatment with RAGE antibody improves angiogenesis 
at 5 days following femoral artery ligation (peak time for 
angiogenesis in this model) documented by uptake of 
99mTc-HYNIC-RGD on single-photon emission computed 
tomography (SPECT) scans and improves blood flow at 
24 days to the hind limbs of diabetic mice with femoral 
artery ligation.

Materials and methods

Cell culture

To test the inhibitory effect of RAGE antibody on phospho-
rylated protein kinase B (p-AKT), vascular smooth muscle 
cells (VSMCs) were maintained in DMEM medium  
supplemented with 10% fetal bovine serum (Gibco-Life 
Technologies, Carlsbad, CA, USA) and 1% penicillin/ 
streptomycin (Gibco) in a 5% CO2 incubator at 37°C.12 For 
experiments, cells were plated at a density of 1 × 105 cells/
ml in a 60 mm dish. Cells were serum-starved overnight 
after they reached 70–80% confluency and the next day 
cells were pre-treated with 10 µg/ml non-immune immuno-
globulin G (IgG) F(ab′)2 or anti-RAGE F(ab′)2 for 1 hour 
followed by treatment with 10 µg/ml of advanced glycation 
endproducts (AGEs) for 20 minutes.

Western blot analysis

Cells were lysed and total cellular lysates were immunob-
lotted and probed with p-AKT (Ser473) and AKT antibod-
ies (Cell Signaling, Danvers, MA, USA). Briefly, proteins 
(25 µg) from cell lysates were denatured and resolved by 
4–12% Bis-Tris gels and then transferred on nitrocellulose 
membrane. Membranes were blocked in 5% non-fat dry 
milk and then incubated with primary antibodies: p-AKT, 
total AKT. Horseradish peroxidase (HRP)-conjugated anti-
rabbit IgG (Amersham, GE, Pittsburg, PA, USA) was 
used to identify sites of primary antibody binding. 
Membranes were stripped of bound primary antibodies 
and re-probed with total AKT antibody. The p-AKT/t-AKT 
ratios were quantified and normalized using ImageJ soft-
ware (NIH, Bethesda, MD, USA).

Animals

All animal experiments were performed in accordance with 
the approval of the Institutional Animal Care and Use 
Committee of Columbia University. Male wild-type (WT) 
C57BL/6 mice (n=30) were obtained from The Jackson 
Laboratory.

Induction of diabetes

At 6–8 weeks of age, mice (n=20) were injected intraperi-
toneally with five consecutive daily doses of streptozotocin 
(STZ; Sigma, St Louis, MO, USA) dissolved in citrate 
buffer (55 mg/kg, pH 4.5). One week after the first dose, 
fasting blood glucose levels were assessed by glucometer 
(FreeStyle Flash; Abbott, Alameda, CA, USA). The crite-
rion of two consecutive glucose levels >250 mg/dL was 
used to indicate diabetes.

Antibody

We initially produced an antibody in rabbits against the 
V-domain of RAGE designed to display immunoreactivity 
in mice, pigs, and humans. Based on Genbank sequences, a 
peptide was prepared and used to immunize mice and sub-
sequently hybridomas were produced. Monoclonal anti-
bodies (mouse IgG2a kappa) were produced in vitro and 
purified by protein A and low endotoxin units (less than 3 
endotoxin units/mg of purified antibody) (Strategic 
Diagnostics or SDIX, Newark, DE, USA). The monoclonal 
whole IgG was fragmented into F(ab′)2 fragments by pep-
sin digestion.

Two weeks after the STZ treatment, half of the diabetic 
mice were treated intraperitoneally with 100 µg/day (three 
times per week) of monoclonal anti-RAGE F(ab′)2 (n=10) 
and nine received normal saline intraperitoneally for 9 
weeks when they underwent left femoral artery ligation. 
Ten additional age-matched WT non-diabetic mice also 
underwent femoral artery ligation. The fasting blood glu-
cose levels and body weights were measured weekly on 
mice from all three groups.

Femoral artery ligation

Unilateral femoral artery ligation was performed in both 
diabetic and non-diabetic mice as previously described.8,9 
Briefly, mice were anesthetized via intraperitoneal injec-
tion of ketamine (100 mg/ml) and xylazine (5 mg/kg). 
Under sterile conditions, a skin incision was made on the 
upper thigh of the mouse. The inguinal ligament and the 
upper half of the femoral artery were exposed in both legs. 
On the left leg, the femoral artery was ligated with two ster-
ile 8/0 non-absorbable silk sutures below the inguinal liga-
ment proximally and just above the bifurcation into the 
superficial and deep femoral arteries distally and then 
excised. The vascular bundle on the right leg was isolated 
without further intervention. The skin incision was closed 
with sterile 5/0 nylon suture.

Preparation of radiotracer

A radiolabeled RGD probe targeting αvβ3 integrin expression 
on budding capillaries is a well-described imaging probe to 
document tissue angiogenesis in response to hypoxia, includ-
ing hind limb ischemia following femoral artery ligation 
(FAL).9,13–18 Aliquots of 5 µg of HYNIC-RGD were incu-
bated with 0.5 ml of tricine solution (70 mg/ml in distilled 
water), 99mTcO4

– solution (50 mCi = 1850 MBq) and 20 µl  
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of tin (II) solution (10 mg of SnCl2.2H2O in 10 ml of nitro-
gen-purged 0.1 N HCl for 20 min) at room temperature for 
30 min.

SPECT/CT imaging

Five days after femoral artery ligation, each mouse was re-
anesthetized for placement of a jugular vein catheter 
(Braintree Scientific, Braintree, MA, USA) and injected 
with 12.2±2.8 MBq 99mTc-HYNIC-RGD and 2–3 hours 
later (blood pool clearance) underwent SPECT/CT (com-
puted tomography) imaging on nanoSPECT/CT (Mediso, 
Boston, MA, USA).

A topogram (sequence of 2D side view X-ray projec-
tions) was used to determine the axial scan range for 
SPECT and CT imaging. CT images were acquired with an 
integrated CT scanner using an X-ray tube at 45 kVp and 
an exposure time of 1000 ms per view. Following CT 
acquisition, helical SPECT scans were acquired using 
dual-headed detectors each outfitted with nine pinhole 
apertures. Each pinhole has a diameter of 1.4 mm with 
each collimator providing a transaxial field-of-view (FOV) 
of 30 mm and an axial FOV of 16 mm, extendable through 
helical scanning to 270 mm. SPECT data were acquired 
with the following parameters: step and shoot rotation, 30° 
step in 360° rotation using 24 projections, 60 s per projec-
tion, 256 × 256 frame size with 1.0 mm pixels, and 140 
keV with 10% energy window. The obtained projection 
data were reconstructed by an ordered-subsets expectation 
maximization algorithm with subset and iteration numbers 
set to 16 and 8, respectively, a voxel size of 300 µm, and 
SPECT and CT datasets fused.

Image analysis

The SPECT/CT scans were reconstructed and processed 
using InVivoScope software (Invicro, Boston, MA, USA). 
Regions of interest (ROIs) were drawn on serial 5-voxel 
thick transverse sections from below the hip joints to distal 
hind limbs, and using a calibration factor the tracer uptake 
in mCi was summed for each limb and subsequently divided 
by the injected dose (ID).

Ultrasound Doppler imaging

A Power-Doppler image system (Vevo 2100; VisualSonics, 
Toronto, Ontario, Canada) was used to measure blood flow 
perfusion 24 days after femoral artery ligation. At this time 
point, blood flow recovery is observed in this model.18 The 
MS-550D probe with a center operating frequency of 32 
MHz and axial resolution of 40 µm was used to acquire all 
images. Briefly, mice were anesthetized using isofluorane 
(1.5–2.0%) and secured to a heated platform in the prone 
position. The hair on the hind limbs was removed using a 
depilatory cream followed by application of ultrasound gel. 
Moving the probe around the proximal and distal hind limbs, 
Doppler signals from vascular structures in multiple views 
in both ischemic and non-ischemic hind limbs were obtained 
and the pulsatility index was determined as: (peak systolic 
velocity – end diastolic velocity) / velocity time integral.19

Quantitative immunohistology

Twenty-four days after left femoral artery ligation, mice were 
sacrificed and tibialis anterior muscles were harvested and 
fixed in 10% formalin for 48 h. Specimens were embedded in 
paraffin and sectioned (5 µm). Serial sections were stained for 
hematoxylin and eosin (H&E) for morphology. Capillary 
density was determined using monoclonal antibody against 
von Willebrand factor (vWF; clone F8/86, DAKO, Agilent 
Technologies, Carpinteria, CA, USA) to identify endothelial 
cells. Serial sections were also stained for RAGE (mouse 
monoclonal anti-RAGE antibody; 50 µg/ml) and VEGFR-2 
(mouse monoclonal antibody, 1:1500 dilution; Cell Signaling 
Technology, Danvers, MA, USA). Secondary stains were  
performed using avidin-biotin HRP visualization systems 
(Vectastain ABC Kit; Vector Laboratories, Burlingame, CA, 
USA) or HRP-conjugated secondary antibody. The number 
of capillaries was counted in four to five randomly selected 
fields in three to four serial sections, averaged, and expressed 
as the number of capillaries per ×400 field. Positive staining 
for RAGE was quantified using color recognition software 
(Image ProPlus; Media Cybernetics, Bethesda, MD, USA). 
Chromagen-positive cells were summed and expressed as a 
percentage of the total cell number in each section for three to 
four serial tissue sections and averaged. The images were pro-
cessed using a Nikon microscope equipped with a digital 
camera (Nikon Co., Tokyo, Japan).

Statistical analysis

Results are shown as mean ± SD. Comparisons between 
treated and control groups were made using Student’s t-test. 
All statistical tests were two-tailed. A p-value less than 0.05 
was considered statistically significant.

Results

Western blot analysis

Western blot analysis demonstrated a marked reduction of 
p-AKT (Ser473) in smooth muscle cells pretreated with 10 
µg/ml of RAGE-antibody F(ab′)2 antibody compared to cells 
pretreated with control non-immune IgG F(ab′)2. RAGE-
antibody pretreatment reduced p-AKT expression by 44% 
(Figure 1).

Blood glucose and body weight

All mice treated with streptozotocin became diabetic with the 
exception of one mouse, which was excluded. Two diabetic 
mice died before imaging, leaving 17 mice: nine in the antibody 
treated group, eight in the saline treated group, and 10 non- 
diabetic controls. The mean fasting blood glucose levels for 
the RAGE-antibody treated diabetic group (329±37.9 mg/dL) 
were not significantly different from the vehicle-treated  
diabetic group (342.3±33.8 mg/dL; p=NS) (Figure 2A). The 
mean fasting blood sugar for the non-diabetic controls was 
93.1±8.0 mg/dL. The mean body weights for both the 
RAGE-antibody treated diabetic mice (23.9±1.76 g) and the 
vehicle-treated diabetic mice (23.78±1.38 g) were lower than 
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for the non-diabetic mice (30.55±1.2 g; p<0.0001 for both). 
There was no significant difference in body weight between 
the RAGE-antibody treated diabetic mice and the vehicle-
treated diabetic mice (Figure 2B).

SPECT/CT scan analysis

Five days after left femoral artery ligation, SPECT/CT scans 
following injection of 99mTc-HYNIC-RGD showed greater 
uptake of the tracer in the ischemic left limbs of RAGE-
antibody treated diabetic mice compared to uptake in the 
ischemic limbs of saline treated diabetic mice (Figure 3: 
A–C). The quantitative tracer uptake as %ID in the RAGE-
antibody treated diabetic ischemic left limbs (3.1±1.4 × 10–3) 
was significantly higher than the uptake in the contralateral 
right (non-ischemic) limb (1.81±0.62; p=0.04) or saline 
treated diabetic ischemic left limbs (1.68±0.35 × 10–3; 
p=0.02) (Figure 3D). For the RAGE-antibody treated dia-
betic group, the mean count ratio for the left over right (L/R) 
limbs (1.7±0.52) was also significantly higher than the saline 
treated diabetic group (1.15±0.12; p=0.01). The mean count 
ratio for the RAGE-antibody treated diabetic group was not 
statistically different from the control non-diabetic group 
(1.99±0.86; p=NS) (Figure 3E).

Ultrasound Doppler imaging

Twenty-four days after femoral artery ligation, an index of 
hind limb blood flow was measured with Doppler ultra-
sound (Figure 4A). The left distal limb arterial pulsatility 
index for the RAGE-antibody treated diabetic group 
(1.49±0.5) was significantlly higher than the vehicle-
treated diabetic group (0.61±0.39; p=0.04) (Figure 4B).

Histological findings

Representative photomicrographs of tissue sections stained 
for H&E and vWF with bar graphs showing capillary  
densities are shown in Figure 5; representative photomicro-
graphs stained for RAGE and bar graphs for RAGE-positive 
staining cells are shown in Figure 6. Quantitative 

immunohistological analysis showed treatment with RAGE 
antibody significantly increased capillary density in the 
ischemic hind limbs compared with saline treated diabetic 
ischemic hind limbs and reduced RAGE expression.

Discussion

Initially developed as a diagnostic imaging agent, the anti-
RAGE F(ab′)2 fragments were coupled to 99mTc via DTPA 
and, using this imaging probe, we have shown in live ani-
mals the extent of RAGE expression in ischemic hind limbs 
in diabetic mice and in the hind limbs of hyperlipidemic 
pigs.8–10 The extent of RAGE expression and its contribu-
tion to the progression of limb ischemia through inhibition 
of angiogenesis, indicates that blocking RAGE is a poten-
tial therapeutic approach to restore blood flow and reduce 
symptoms. We tested the blocking properties of the anti-
body against VSMCs in cell culture and the promising 
results of these experiments prompted us to design the pre-
sent placebo-controlled treatment study. Our results indi-
cate that in this model, pretreatment with RAGE antibody 
improves angiogenesis, as documented by in vivo molecu-
lar imaging at 5 days following femoral artery ligation (the 
peak time for angiogenesis in this model), and subsequently 
improves limb blood flow.
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Figure 1.  Levels of phosphorylated (Ser473)/total Akt in 
vascular smooth muscle cells shown by western blotting upon 
stimulation with 10 µg/ml of advanced glycation endproducts 
for 20 minutes after pre-treatment with 10 µg/ml of IgG and 
α-RAGE F(ab′)2 antibodies for 1 hour. Results shown are 
representative of three independent experiments.
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Diabetics have an attenuated angiogenic response to tis-
sue hypoxia which contributes to long-term complications 
including poor collateral formation in the lower extremi-
ties which is further aggravated by poor wound healing 
and ulcers. Several mechanisms have been identified that 
contribute to this reduced angiogenic response in diabet-
ics.2–7 The binding of ligand AGEs to its receptor initiates 
downstream pathways shown to impair angiogenesis, 
including suppressing metalloproteinase activity, attenuat-
ing the chemotactic response of monocytes to VEGF-A, 
and inhibiting the bone marrow-derived cell contribution 
to angiogenesis.6,7

Approaches to blocking RAGE have been reported using 
either a decoy protein copy of the extracellular two-thirds of 
the receptor (s-RAGE) that binds circulating ligands (particu-
larly AGEs), thereby reducing receptor expression or admin-
istering a blocking or neutralizing antibody. Treatment of 
apoE–/– mice with s-RAGE as a decoy to bind circulating 
ligands reduced atherogenesis compared to placebo, improved 
wound healing, sepsis, tumor growth and metastasis, and 
treatment of diabetic mice with limb ischemia showed 
improved limb blood flow compared to placebo.20–23 Blocking 
or neutralizing antibodies to RAGE have been shown to 
reduce or ameliorate the detrimental effects of RAGE expres-
sion in diabetic renal disease.24 This is the first study to report 
a therapeutic effect of a RAGE blocking antibody in limb 
ischemia. Therapeutic monoclonal antibodies are now 
approved for clinical use in several diseases, making this 
approach a possibility to pursue.

To document angiogenesis in live animals we used a 
radiolabeled RGD (Arg–Gly–Asp) peptide as an imaging 
probe that targets increased expression of αvβ3 integrin on 
endothelial cells in regions of capillary sprouting. 
Radionuclide probes to image angiogenesis in hind limb 
ischemia include SPECT and PET-labeled RGDs or pepto-
mimetic proteins.9,14–17 Experimental studies using these 
probes have shown that quantitative estimates of tracer 
uptake on scans in the affected limbs correlate well with 
capillary sprouting. We therefore chose to estimate angio-
genesis at 5 days after FAL (peak time for capillary sprout-
ing) with imaging. We estimated mature capillary density at 
24 days after FAL by quantitative immunohistology of posi-
tive vWF stained cells. At this later time point after femoral 
artery ligation in mice new capillary growth has declined.15,16

While imaging integrin expression indicates the extent 
of neovessel growth at 5 days after FAL, it is important to 
translate these results into arterial blood flow or tissue per-
fusion at the later time point. Doppler ultrasound is used to 
assess lower limb blood flow in humans. Operating in the 
Power-Doppler mode, small animal ultrasound machines 
can now obtain Doppler signals from arteries in murine 
hind limbs. The pulsatility index, also known as the ‘resis-
tive index’, is determined from the peak systolic velocity, 
end-diastolic velocity, and velocity time integral and was 
first described by Dr Gosling in 1974.19 While this index is 
currently used mostly in obstetrics and neurology (transcra-
nial Doppler), application in vascular disease and PAD 
have been reported, as well as for flow assessment though 

Figure 3.  SPECT/CT imaging. Representative coronal slices from SPECT/CT scans following injection of 99mTc-HYNIC-RGD 5 
days after left FAL for: (A) RAGE-antibody treated diabetic mouse; (B) vehicle-treated diabetic mouse; and (C) control non-diabetic 
mouse. Tracer uptake is shown in red for the L (ligated) and R (sham-operated) legs. (D) Bars represent mean ± standard deviation 
values for %ID for both left and right hind limbs for RAGE-antibody treated diabetic mice (left set of bars), saline treated diabetic 
mice (center bars), and non-diabetic mice (right set of bars) 5 days after FAL. (E) Bars represent mean ± standard deviation values 
for the ratios of left/right (L/R) hind limbs from scan count data. (DM, diabetes mellitus; NDM, non-diabetes mellitus; FAL, femoral 
artery ligation.)
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vein grafts to coronary arteries intraoperatively.25–27 
Compared to laser Doppler which assesses tissue perfusion, 
the pulsatility index more closely indicates blood flow in 
arterial vascular collaterals.

Summary

PAD is a common condition producing symptomatic ischemic 
leg pain for which there are currently no effective drug thera-
pies. We developed a monoclonal antibody that targets a 
unique peptide sequence on the extracellular domain of the 
RAGE receptor initially for diagnostic applications and subse-
quently found to have blocking properties. Because of the 
importance of RAGE expression in vascular disease and in 
suppressing angiogenesis in limb ischemia, especially in dia-
betics, we hypothesized that treatment with this antibody in an 
established small animal model would show beneficial effects 
on angiogenesis and limb blood flow. We documented these 
beneficial effects with molecular imaging of angiogenesis at 5 
days and by ultrasound Doppler flow at 24 days. We supported 
the in vivo imaging results with quantitative immunohistology 
showing lower RAGE staining and higher staining for vWF 
(capillary density) in the antibody treated diabetic mice com-
pared to the saline treated mice. These results suggest that fur-
ther testing and development of this antibody and imaging 
approach towards potential clinical trials is indicated.
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