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• Fire is a significant environmental perturbation to forests where 
vegetation transforms from biomass to ash, releasing stored chemical 
elements to soils (Bodí et al., 2014).  
• Wood ash has long been known as a source of plant nutrients 

(Pitman, 2006), but the total  presence and variability in elemental 
concentrations are less certain (Pererira et al., 2012).  

• Research suggests vegetation type plays a key role in ash 
elemental composition (Bodí et al., 2014; Pererira et al., 2012); 
however, few studies compare ash chemistry from multiple tree 
species in one contiguous forest.  

• The purpose of this study was to assess the chemical composition of 
wood ash; identify chemical variability in ash from different tree 
species; and provide a more thorough understanding of how fire 
induces rapid biogeochemical cycling in a forested ecosystem.  

• This research supports a larger project on biogeochemical cycling within 
forests after fire (Pope et al. 2012; Callanan et al., 2017; Darley 2017).   

a Mixed Hardwood Forest of Northern New Jersey 

• To identify major, trace, and rare earth element (REE) concentrations 
(n=44 elements) in ash derived from fifteen tree species;  

• Determine likely elemental enrichment ash provided to soils after a 
forest fire event;  

• Assess interspecific variation in resulting ash chemistry with likely 
mechanisms to explain such variability. 

• All controlled burns reached temperatures typically observed during 
high intensity forest fire events (Table 1).  

• Elements more concentrated in ash than soil included MnO, MgO, 
CaO, K₂O and P₂O₅ , Ni, Cu, Zn, Sr, Ba and all REEs (Figures 1, 3, 4) . 

• The majority of ash samples consisted of silica and calcium, both of 
which had a strong negative correlation with one another (Figure 2). 

• Considerable elemental variation existed among all species specific 
ash samples (Figure 2, 4).  
• Ring porous hardwood species typically generated ash with higher 

calcium content than diffuse porous species; coniferous species 
generated ash with the highest silica content (Figure 2, Table 1).  

• Ash derived from Populus grandidentata, Betula lenta, and B. 
alleghaniensis had the highest concentrations of Zn and Ba, along 
with elevated levels of other trace elements (Figure 3).  

• All REEs were 10 -15 times more concentrated in ash samples than 
soil samples (Figure 4). Each REE had a positive correlation with silica 
and negative correlation with calcium oxide (p<0.05 for each).  

• Mann Whitney U test was used to compare elemental concentrations 
between mineral ash and soil samples. 

• Spearman Correlation assessed correlations between specific 
elemental concentrations in mineral ash samples.  

• This research supports Darley (2017) hypothesis that MnO, CaO, Cu, 
Ba and Sr fire signatures in soils were derived from wood ash.  

• Elemental concentrations above the soil average were likely 
sequestered by trees and incorporated into cell walls of wood tissue. 
Elements below the soil average were likely excluded by trees.  
• All major and trace elements more concentrated in ash than soils  

have a metabolic or physiologic functions associated with plants, 
except for barium (Ba) and strontium (Sr). Most of these elements 
also share a similar periodic property: 2+ oxidation state.  

• REEs have no metabolic or physiologic function in plants and are 
likely incorporated via passive uptake with essential nutrient 
compounds (i.e. from the weathering of phosphate minerals). 

• Differing accumulation, exclusion, and detoxification mechanisms by 
trees may explain chemical variability among ash samples.  

• Responsible use of fire can manage fuel loads and stimulates rapid 
ecological succession with the influx nutrients to soils; both of which 
help establish a diversified, mixed successional, forest mosaic.  
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Scientific Name  Common Name  Burn Temp °C + SE 

Acer saccharum sugar maple ^ 528.0 + 71.8 

Betula  alleghaniensis yellow birch  ^ 484.7 + 19.2 

Betula lenta  black birch  ^ 581.0 + 72.9 

Fraxinus americana  white ash ⁺ 561.0 + 157.9 

Liriodendron tulipifera tulip poplar  ^ 669.3 + 35.0 

Picea abies   Norway spruce ** 738.3 + 25.5 

Pinus resinosa red pine ** 591.0 + 13.0 

Pinus strobus   E. white pine ** 633.3 + 74.2 

Populus grandidentata big tooth aspen ^  635.7 + 37.9 

Prunus serontina  black cherry ^ 534.3 + 64.3 

Quercus alba white oak ⁺ 518.7 + 100.3  

Quercus montana   chestnut oak ⁺ 605.0 + 122.6 

Quercus rubra  red oak ⁺ 653.7 + 7.9 

Quercus velutina black oak ⁺ 643.0 + 28.0 

Tsuga canadensis E. hemlock ** 547.0 + 104.3 

Control (ambient) 33.2 + .60 

• Fires ignited with Benzomatic MAPP Pro™ benzene  torch and 
temperatures recorded with IR thermometer (model # 42515) at 15 
minute intervals (n=3 readings per fire).  

• Bulk mineral ash and 10 cm soil cores collected from each plot.    
 

• Elemental Analysis by ICP-MS 
• Mineral ash and soil flux fused with LiBO₂ at 1050⁰C and digested in 

50mL 7% HNO₃ for 30 minutes (500×’s dilution).  
• 0.5 mL diluted with 9.5 mL 2% HNO₃ to reach 10,000×’s dilution.  
• Diluted solution analyzed in triplicate by Inductively Coupled 

Plasma Mass Spectrometry (ICP-MS).  
• Major elements reported in % oxide weight, trace elements reported 

in parts per million (ppm), and REE’s reported in normalized ppm 
(normalized to chondrite meteorite concentrations). 

• Study Site:  
• The New Jersey School of Conservation, Sandyston, NJ. 

 

• Species Specific Controlled Burns:  
• Branches collected from 15 dominant tree species (n=3 

individuals per species >10 cm in trunk diameter)    
(table 1) and burned in designated one meter diameter 
plots (n=15 plots + 1 control). 

Methods   

Statistical Analyses     

Table 1: Summary of tree species burned (n=15) and burn 
temperature reached by each species specific fire.  
(**) denotes conifers; (+) denotes ring  porous hardwoods; 
and (^) denotes diffuse porous hardwoods.  

Figure 1: Comparisons of ash (n=15) and soil (n=16) samples per 
major chemical oxide. Ash samples were more concentrated in 
MnO, MgO, CaO, K₂O and P₂O₅ than soil (p<0.005 for all elements).  

Figure 2: Major elemental composition of species specific ash 
samples. Other major oxides are listed in figure 1. Silica and calcium 
oxide had a strong negative relationship (ρ = -0.975 and p<0.0005).   

Figure 3: Interspecific variation among ash samples.  Ni, Cu, Zn, Sr, and Ba were significantly more concentrated in ash than soil (black line) 
(p<0.0005). Populus grandidentata, Betula lenta, and B. alleghaniensis had the highest concentrations of Zn and Ba.  F. americana had the 
highest concentration of Cu and Sr; P. grandidentata had the highest Ni concentration. Elements ordered by increasing atomic weight.  

Figure 4: Comparisons of ash (n=15) and soil (n=16) samples for 
every REE. All REEs were 10-15 times more concentrated in ash than 
soil samples (p<0.0005). A slight negative Eu anomaly existed in ash 
but not soils. Elements ordered by increasing atomic weight.  
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