

Montage- und Bedienungsanleitung

CALEC® ST II

Multifunktionaler Wärme- und Kälterechner

Inhaltsverzeichnis

1	Sicherheit	3
1.1	Bestimmungsgemässe Verwendung	3
1.2	Hinweise zu Sicherheitsbestimmungen und – Symbolen	3
1.3	Sicherheitshinweise und Vorsichtsmassnahmen	4
1.4	Über die Bedienungsanleitung	
2	Produktbeschreibung	
2.1	Einsatzgebiete	
2.2	Aufbau einer Messstelle	
2.3	Geräteaufbau	
3	Lieferumfang und Zubehör	
4	Montage	
4.1	Geräteabmessungen	
4.2	Lochmasse Wandmontage	
4.3	Freie Höhe	
4.4	Werkzeug, Montagematerial	
4.5	Vorbereitung Wandmontage	
4.6	Wandmontage	
4.7	Gehäuse Schliessen	
4.8	Tragschienenmontage DIN-EN 50222	
5	Installation	
5.1	Anschlussschema	
5.2	Spannungsversorgung	
5.3	Sensor Spannungsversorgung	
5.4	Temperaturfühler	17
5.5	Durchflussgeber mit Pulsausgang	
5.6	Installationsbeispiele für Durchflussgeber am Pulseingang #1	21
5.7	Pulseingänge	24
5.8	Digitalausgänge / Statussignale / Alarme	26
5.9	Modulsteckplätze (Kommunikations- und Funktionsmodule)	27
6	Inbetriebnahme	36
6.1	CALEC® ST II einschalten	
6.2	Funktionskontrolle	
6.3	Anzeige	
6.4	Bedienung	
6.5	Tastenfunktionen	
6.6	Menüstruktur	
0.0 7	Instandhaltung und Wartung	
7.1	Eichung	
7.1 8	Störung und Fehlermeldung	40
9	Ausserbetriebnahme, Demontage und Entsorgung	49 50
9.1	Ausserbetriebnahme	50
9.1 9.2	Ausserbetriebnahme	
9.2 10	Entsorgung	
-	Technische Daten	
11	Anhang	
11.1	CE- Zertifikat	
11.2	Bohrschablone	56

1 Sicherheit

1.1 Bestimmungsgemässe Verwendung

Das Gerät CALEC® St II ist ausschliesslich für die Erfassung, Berechnung, Darstellung und Versendung von Informationen bestimmt.

Eine unsachgemässe oder nicht bestimmungsgemässe Verwendung kann dazu führen, dass die Betriebssicherheit des Geräts nicht mehr gewährleistet ist. Der Hersteller übernimmt für daraus resultierende Schäden an Menschen und Material keine Haftung.

1.2 Hinweise zu Sicherheitsbestimmungen und – Symbolen

Die Geräte sind so konzipiert, dass sie die neuesten Sicherheitsanforderungen erfüllen. Sie wurden getestet und in einem Zustand ausgeliefert, der einen sicheren Betrieb gewährleistet. Bei unsachgemässer oder nicht bestimmungsgemässer Verwendung können die Geräte jedoch eine Gefahrenquelle darstellen. Achten Sie daher immer besonders auf die in dieser Anleitung durch folgende Symbole dargestellten Sicherheitshinweise:

WARNUNG

WARNUNG weist auf eine gefährliche Situation, die, wenn sie nicht vermieden wird, zum Tod oder zu schweren Verletzungen führen kann.

VORSICHT

VORSICHT weist auf eine gefährliche Situation hin, die bei Nichtbeachtung zu einer leichten oder mittelschweren Verletzungen führen kann.

HINWEIS

HINWEIS weist auf eine gefährliche Situation, die, wenn nicht vermieden, zu Sachschäden führen kann.

ANMERKUNG

ANMERKUNG enthält hilfreiche Tipps und Empfehlungen sowie Informationen für einen effizienten und störungsfreien Betrieb.

Siehe Dok VD 3-126 d,e,f

1.3 Sicherheitshinweise und Vorsichtsmassnahmen

Der Hersteller übernimmt keinerlei Verantwortung, wenn die folgenden Sicherheitsvorschriften und Vorsichtsmassnahmen missachtet werden:

Änderungen am Gerät, die ohne vorherige schriftliche Zustimmung vom Hersteller umgesetzt werden, führen zur sofortigen Beendigung der Produkthaftung und Gewährleistung.

Installation, Betrieb, Wartung, Instandhaltung und Ausserbetriebnahme dieses Gerätes darf nur durch vom Hersteller, Betreiber oder Eigentümer der Anlage autorisiertes Fachpersonal durchgeführt werden. Der Spezialist muss die gesamte Montage und Bedienungsanleitung gelesen und verstanden haben und ist verpflichtet dieser zu folgen.

Überprüfen Sie die Netzspannung und die Angaben auf dem Typenschild, bevor Sie das Gerät installieren.

Überprüfen Sie alle Anschlüsse, Einstellungen und technischen Spezifikationen allfällig vorhandener Peripheriegeräte.

Öffnen Sie Gehäuse oder Teile von Gehäusen, welche elektrische, bzw. elektronische Komponenten enthalten nur, wenn die elektrische Energie abgeschaltet ist.

Berühren Sie keine elektronischen Bauteile (ESD -Empfindlichkeit).

Setzen Sie das System bezüglich der mechanischen Belastung, (Druck, Temperatur, IP-Schutz etc.) maximal nur den spezifizierten Klassifizierungen aus.

Bei Arbeiten, die mechanische Komponenten des Systems betreffen, muss der Druck im Leitungssystem entlastet, bzw. die Temperatur des Mediums auf für Menschen unbedenkliche Werte gebracht werden.

Keine der hier oder anderswo genannten Informationen entbindet Planer, Ingenieure, Installateure und Betreiber von ihren eigenen sorgfältigen und umfassenden Bewertungen der jeweiligen Systemkonfiguration in Bezug auf die Funktionsfähigkeit und Betriebssicherheit.

Die lokalen Arbeits-und Sicherheitsvorschriften und Gesetze sind einzuhalten.

1.4 Über die Bedienungsanleitung

Der Hersteller behält sich das Recht vor, Änderungen an den technischen Daten ohne Ankündigung vorzunehmen. Die neuesten Informationen und Versionen dieser Bedienungsanleitung erhalten Sie bei Ihrer lokalen Niederlassung oder Vertretung.

WARNUNG

Jegliche Haftung wird hinfällig, wenn die in diesem Handbuch beschriebenen Anweisungen und Verfahren nicht befolgt werden!

HINWEIS

Diese Installationsanleitung ist für qualifiziertes Personal gedacht und enthält daher keine grundlegenden Arbeitsschritte. Vor Inbetriebnahme des Gerätes oder Systems muss diese Montage- und Betriebsanleitung vollständig gelesen und verstanden werden.

Bewahren Sie diese Anleitung zum späteren Nachschlagen auf!

ANMERKUNG

Vorschriften und Empfehlungen für Einbau und Betrieb einhalten

- EN1434 Teil 6 (Einbau, Inbetriebnahme, Überwachung und Wartung) einhalten
- Empfehlungen der Fachverbände (Merkblätter der AGFW) einhalten
- Vorschriften für Kontroll-Tauchhülsen (Frankreich nach FDE 39-007) einhalten

2 Produktbeschreibung

Wir beglückwünschen Sie zum Erwerb dieses hochwertigen Wärme- und Kälterechners.

2.1 Einsatzgebiete

Der CALEC® ST II ist für die Anwendungen in den Bereichen Geschäftsbau / Gebäudetechnik, Nah- und Fernwärme / Fernkälte, Wohnungsbau / Sanitär konzipiert worden und kann wie folgt zum Einsatz kommen:

Systemintegrationskomponente

Durch das flexible Schnittstellenangebot des CALEC® ST II, integrieren Sie Ihre Energiedaten jeglicher thermischer Anwendungen auf einfachste Weise in übergeordnete Energiemanagement- und Gebäudeleitsysteme.

Wärme-/ Kälte-Übergabestation

Der Energierechner CALEC® ST II bietet zusammen mit den unterschiedlichsten Durchflussgebern der Aquametro AG die perfekte Kombination zur Ermittlung der Leistungsdaten bei mittleren Wärmeleistungen speziell für Verteilstationen und grösseren Gebäuden.

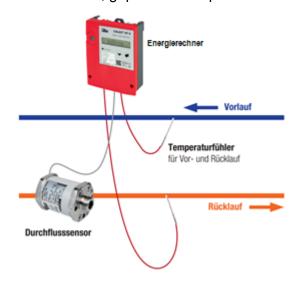
2.2 Aufbau einer Messstelle

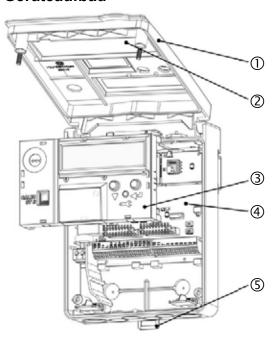
VORSICHT

Verlust der Eichgültigkeit aufgrund veränderter Eichparameter oder Eichplombenverletzung

Verlust der Eichgültigkeit

- Eichplombe verhindert Zugang zu eichrelevanten Parametern
- Anpassung eichrelevanter Parameter nur durch Hersteller oder benannte Eichstelle möglich
- Inbetriebsetzung geeichter Messstellen ausschliesslich nach geltenden Vorschriften durch zugelassene Stellen möglich
- Nach Inbetriebsetzung werden Komponenten der Messstelle plombiert


VORSICHT


Falsche Messwerte aufrund nicht eingehaltener Vorschriften

Gefahr von Fehlfunktion

 Überprüfung der Angaben zu Temperaturfühler, Impulswertigkeit und Einbauseite mit Typenschild auf CALEC® ST II Eine komplette Messstelle für thermische Energie besteht aus dem Energierechner CALEC® ST II, gepaarten Temperaturfühlern und einem Durchflussgeber.

2.3 Geräteaufbau

- ① Frontdeckel
- ② Anschlusschema (Innenseite Frontdeckel)
- 3 Steckbares Rechenwerk
- ④ Grundplatine mit Anschlussklemmen und Micro-Schaltern zur Konfiguration der Ein- und Ausgänge
- Schnapphalter für Hutschiene

3 Lieferumfang und Zubehör

VORSICHT

Sachschäden aufgrund nicht eingehaltenen Transport-/ und Umgebungsbedingungen

Gefahr von Fehlfunktion

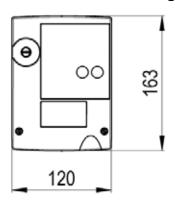
- Präzisionsmessgerät keiner Hitze, Feuchtigkeit, Verschmutzung und Erschütterung aussetzen
- Messgerät kühl und trocken lagern
- Unmittelbar vor dem Einbau das Gerät aus der Verpackung nehmen

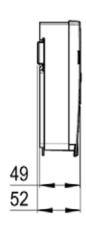
Der Lieferumfang wird auf dem Lieferschein beschrieben und der Inhalt auf der Verpackung angezeigt. Bitte überprüfen Sie alle Komponenten und gelieferten Teile umgehend nach Erhalt der Ware. Transportschäden sind sofort anzuzeigen!

3.1.1 Allgemein

- 1. CALEC® ST II
- 2. Bedienungskurzanleitung

3.1.2 Montage und Anschlusszubehör

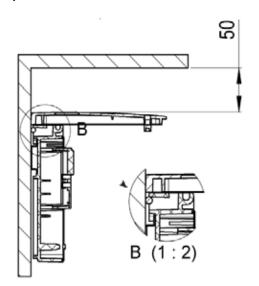

- ① Vorstechahle
- ② Zugentlastungsscheiben
- ⑤ Sicherungskappen und Frontdeckel


4 Montage

Der CALEC® ST II kann auf einer Tragschiene oder auf einer ebenen Wand montiert werden. Passende Tragschienen sind als Zubehör erhältlich.

Eine Bohrschablone für beide Montagearten finden Sie auf der letzten Seite dieses Dokumentes

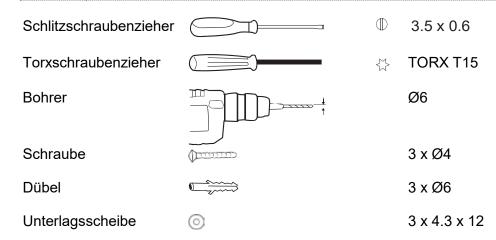
4.1 Geräteabmessungen



4.2 Lochmasse Wandmontage

60 60 Ø 7

4.3 Freie Höhe (Einrasten des Gehäusedeckels

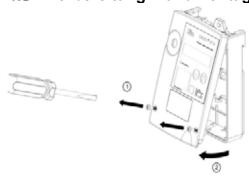

4.4 Werkzeug, Montagematerial

ANMERKUNG

Montagematerial

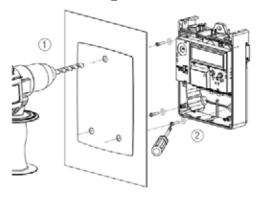
• Nicht im Lieferumfang enthalten

VORSICHT


Beschädigung des Gerätes durch nichteinhalten der Montagebedingungen

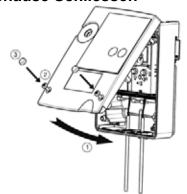
Fehlerhaftefunktionen bis Geräte defekt

- Zugänglichkeit gewährleisten für Montage, Bedienung und Unterhalt
- Geschützte, trockene Umgebung
- Hitze-/ Sonneneinwirkungen vermeiden
- Sicherheitsabstand zu elektrischen Störquellen vermeiden


4.5 Vorbereitung Wandmontage

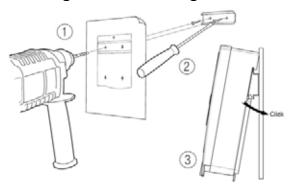
- 1. Verschraubung lösen
- 2. Gehäuse öffnen

Wandmontageführungen frei gelegt


4.6 Wandmontage

- 1. Löcher Ø6mm bohren
- 2. Gerät anschrauben

Gerät an Wand montiert


4.7 Gehäuse Schliessen

- 1. Deckel von oben in Schanier einführen und zu schwenken
- 2. Befestigungsschrauben anziehen
- 3. Sicherungskappen (Plombierung) anbringen (glatte Seite nach aussen)

Gehäuse ist geschlossen

4.8 Tragschienenmontage DIN-EN 50222

- 1. Löcher Ø6mm bohren
- 2. Tragschine anschrauben
- 3. Gerät auf Tragschiene schnappen

Gerät auf Tragschiene montiert

5 Installation

Lesen Sie die folgenden Handlungsaufforderungen und Warnhinweise aufmerksam durch, um eine feherfreie Inbetriebnahme gewährleisten zu können.

WARNUNG

Verbrennungen und Lähmungen mit Todesfolge durch Stromschlag beim Berühren oder Anfassen von stromführenden Anlagenteile

Lebensgefahr durch Strom!

- Installations- und Wartungsarbeiten nur in spannungslosem Zustand durchführen
- Arbeiten an und mit Netzspannung dürfen nur von berechtigtem Fachpersonal unter Beachtung der geltenden Vorschriften ausgeführt werden
- Netzspannung nur an die dafür ausgewiesenen Klemmen anlegen

5.1 Anschlussschema

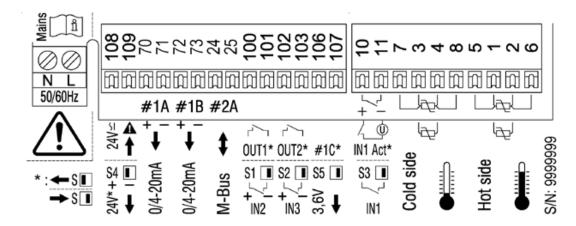
Auf der Innenseite des Frontdeckels befindet sich das Anschlussschema (siehe Abb. 5.1.1)

ANMERKUNG

Klemmentechnik als Direktsteck-Anschlussklemmen nach «Push In» Prinzip

- Abisolierte starre AEH Leiter oder feindrätige Leiter mit gecrimpten Aderendhülsen sind direkt streckbar
- Zuverlässige, rüttelsichere und gasdichte Verbindung
- Zum Trennen der Verbindung «Lösetaste» nutzen
- Anschliessbare Leiter (Einleiteranschluss):

	`	,
0	Eindrähtig	0.501.50mm ²
0	Feindrähtig	0.501.50mm ²
0	Feindrähtig mit AEH	0.251.50mm ²
0	AEH mit Kunststoffkrage	0.250.75mm ²
0	Abisolierlänge	8.0 + 1.0mm
0	AWG	24-16


ANMERKUNG

Funktionalitäten der Anschlüsse über Microschalter S1 – S5 konfigurierbar

- Auslieferzustand ist auf Anschlussschema dokumentiert
- Durch Konfiguration des entsprechenden Microschalter kann alternative Funktion aktiviert werden

5.1.1 Anschlussschema Beispiel mit Analogausgänge in Socket #1 und M-Bus in Socket #2

5.1.2 Übersicht Konfigurationsmöglichkeiten mittels Micro-Schaltern

Klemmen Schalter Funktion Pos		Funktion Position links	Funktion Position rechts
		*: ← \$■	→ \$ ■
102 - 103	S2	OUTPUT#2	INPUT#3
10 - 11	S3	INPUT#1: Aktives Gebersignal	INPUT#1: Passives Gebersignal
10 - 11		(5 - 48 VDC)	(z. Bsp. Reed)
	S4	Sensor-Versorgungsspan- nung 24 VDC	Kleinspannungsversorgung
108 - 109			siehe Hinweis Keinspannungsver-
			sorgung (Seite 13)
106 - 107	S5	OUTPUT #1C	Sensor-Versorgungsspannung
100 - 107	00	0011 01 #10	3.6 VDC

5.2 Spannungsversorgung

WARNUNG

Verbrennungen und Lähmungen mit Todesfolge durch Stromschlag beim Berühren oder Anfassen von stromführenden Anlagenteile

Lebensgefahr durch Strom!

- Anschluss an Stromkreis ausschliesslich mit Absicherung max.10A und doppelpoligem Trennelement
- Spanungsversorgung:

o Spannungsbereich 100 – 240VAC

FrequenzbereichLeistungsbedarf50 / 60Hzmax. 15VA

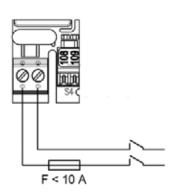
HINWEIS

Beschädigung des Gerätes durch nichteinhalten der Montagebedingungen

<u>Fehlerhaftefunktionen</u>

- Stromversorgung durch externes Überstromschutzorgan (max. 10A) schützen, dass bei einem elektrischen Fehler eine sichere Abschaltung gewährleistet ist.
- Stromversorgung gegen mutwillige Unterbrechung sichern und muss für Wartungsarbeiten abgeschaltet werden können
- 2-polige Trennvorrichtung oder 2-polig trennendes Überstromschutzorgan verwenden. Der Stromkreis für das Rechenwerk soll jedoch nicht unabhängig von der Heiz- bzw. Kühlanlage vom Netz getrennt werden können.
- Temperaturbeständigkeit > 65°C für Anschlussleitung

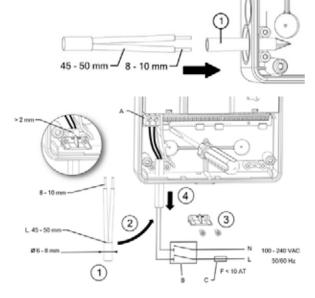
ANMERKUNG


Versorgungsspannung Anschlüsse L und N

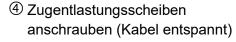
- Versorgungsspannung über die Schraubklemmen gemäss den lokalen Vorschriften anschliessen
- Kabeleinführung durch die Membrandichtung erfolgt mit Hilfe der beigelegten Vorstechahle
- Anschlussverdrahtung

Anschlussquerschnitt max. 2.5mm²
 Manteldurchmesser max. 8mm
 Temperaturbeständigkeit min.65°C

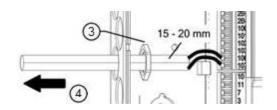
5.2.1 CALEC® ST II Versorgungsspannung (100-240VAC, 50/60Hz)



- Sicherstellen, dass das Netzkabel spannungsfrei ist!
- 2. Frontdeckel abnehmen (siehe 4.5)
- 3. Trennvorrichtung nutzen
- 4. Klemmverschraubung lösen (Klemmen L (240VAC) / N (GND))
- Spannungsversorgung an Klemmen L (240VAC) / N (GND) anschliessen
- 6. Klemmverschraubung festziehen
- 7. Frontdeckel schliessen
- 8. Frontdeckel plombieren


CALEC® ST II wird mit Spanunng versorgt

5.2.2 Detaillierte Darstellung zur Versorgungsspannung



- ② Kabel abisolieren und mit Vorstechahle durch Membrandichtung führen
- (A) Netzanschlussklemme
- (B) Externe Trennvorrichtung
- (C) Externe Absicherung

④ Zugentlastung überprüfen

Spannungsversorgung ist angeschlossen

WARNUNG

Verbrennungen und Lähmungen mit Todesfolge durch Stromschlag beim Berühren oder Anfassen von stromführenden Anlagenteile

Lebensgefahr durch Strom!

- Bei mehrfach Erd-bezug (PE) in Feldinstallation muss der Adapter vorgeschaltet werden
 - Erd-Bezug des Impulseingangs (z.B. Impulsgeber AMFLO® MAG Basic)
 - o Erd-Bezug der Sensorspeisung 3.6V und / oder 24V
 - Erdung eines Pols der Kleinspannungsversorgung
- Kleinspannungsversorgung ohne Adapter (isolierte Speisung 24V-24V)
 - Spannungsbereich 12 42VDC / 12 36VAC
 - $_{\odot}$ Frequenzbereich 50 / 60Hz
 - o Leistungsbedarf max. 1VA
- Kleinspannungsversorgung mit Adapter (isolierte Speisung 24V-24V)
 - o Spannungsbereich 24VDC ± 20%
 - Leistungsbedarf max. 1W

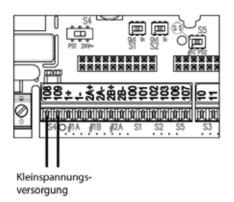
VORSICHT

Beschädigung oder Fehlfunktion des Gerätes durch nichteinhalten der Installationsbedingungen

Fehlerhaftefunktionen bis Geräte defekt

- Kleinspannungsversorgung nur mit Schalter S4 in der Position «rechts» verwenden
- Ausgangsspannung 24VDC, galvanisch getrennt gegenüber allen anderen Ausgängen

Belastung: max. 150mAGalvanische Trennung: max. 48VDC


ANMERKUNG

Kleinspannungsversorgung Anschlüsse 108 und 109

- Versorgung des CALEC[®] ST II mit Sicherheitskleinspannung
- Kleinspannungsversorgung mit Adapter ermöglicht Paralellisierung von Kleinspannungsversorgung und Sensorversorgung
 - Sensor an OUT2+ und OUT2- anschliessen (max. 150mA)
- Adapter erhältlich bei Aquametro AG
- Schalter S4 zur Konfiguration nutzen → \$□ 24 V.

5.2.3 CALEC® ST II Kleinspannungsversorgung (12-24VDC)

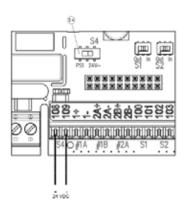
- 1. CALEC® ST II spannungsfrei schalten
- 2. Frontdeckel abnehmen (siehe 4.5)
- 3. Rechenwerk abnehmen
- Schalter S4 umschalten → \$□ auf 24V-
- Bei Bedarf Adapter anschliessen 108+ auf Adapter zu Klemme 108 auf CALEC® ST II 109- auf Adapter zu Klemme 109 auf CALEC® ST II
- 6. IN+ und IN- auf Adapter zu der externen Messstellenversorgung
- 7. Rechenwerk stecken
- 8. Frontdeckel schliessen
- 9. Frontdeckel plombieren

CALEC® ST II wird mit Kleinspannung versorgt

oder bei Verwendung mit Adapter

CALEC® ST II wird mit Kleinspannung versorgt und Sensor wird mit Kleinspannung versorgt

5.3 Sensor Spannungsversorgung


ANMERKUNG

Sensor Spannungsversorgung mit 24VDC

- Sensor Speisung mit Klemmen 108 / 109 kann auch für aktive Speisung der Stromausgänge genutzt werden, falls Sensor Speisung nicht benötigt wird
- Bei Versorgung mehrerer Stromausgänge ist darauf zu achten, dass diese galvanisch getrennt sind
- Für Durchflussensor AMFLO® MAG Smart verwenden.
- Schalter S4 zur Konfiguration nutzen *:←⁵■ PS1

5.3.1 Sensor-Spannungsversorgung 24VDC

- 1. CALEC® ST II spannungsfrei schalten
- 2. Frontdeckel abnehmen (siehe 4.5)
- 3. Rechenwerk abnehmen
- 4. Schalter S4 umschalten *:←SI PS1
- 5. Sensor an Klemmen 108 und 109 anschliessen
- 6. Rechenwerk stecken
- 7. Frontdeckel schliessen
- 8. Frontdeckel plombieren

Sensor wird mit Kleinspannung versorgt

ANMERKUNG

Sensor Spannungsversorgung mit 3.6VDC

- Sensor Speisung mit Klemmen 106 / 107
- Der Anschluss 107 ist mit dem Anschluss 11 verbunden und bildet für den Durchflussgeber das Bezugspotential.
- Für Durchflussensor AMFLO® SONIC UFA113 verwenden
- Schalter S5 zur Konfiguration nutzen → \$□ PS2

5.3.2 Sensor-Spannungsversorgung 3.6VDC

- CALEC[®] ST II spannungsfrei schalten
- 2. Frontdeckel abnehmen (siehe 4.5)
- 3. Rechenwerk abnehmen
- 4. Schalter S5 umschalten → \$ PS2
- 5. Sensor an Klemmen 106 und 107 anschliessen
- 6. Rechenwerk stecken
- 7. Frontdeckel schliessen
- 8. Frontdeckel plombieren

Sensor wird mit Kleinspannung versorgt

5.4 Temperaturfühler

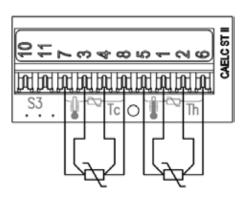
HINWEIS

Beschädigung oder Fehlfunktion des Gerätes durch nichteinhalten der Installationsbedingungen

Fehlerhaftefunktionen bis Geräte defekt

- Anschlüsse sorgfältig kontrollieren
- Temperaturfühler nicht in der Nähe von Netzleitungen oder elektromagnetischen Störquellen verlegen (min. 50cm Abstand)

ANMERKUNG


Temperaturfühler Angaben bei 4 Leiter- Prinzip

- Anschlussklemmen 1 8 (bei 4 Leiter- Prinzip)
- Anschlussverdrahtung

Anschlussquerschnitt min. 0.22mm²

Kabellänge max. 100m

5.4.1 Temperaturfühler 4-Leiter

- 1. CALEC® ST II spannungsfrei schalten
- 2. Frontdeckel abnehmen (siehe 4.5)
- 3. Temperaturfühler anschliessen
 - Thot Klemme 1/5 und 2/6
 - T_{cold} Klemme 3/7 und 4/8
- 4. Frontdeckel schliessen

Temperaturfühler sind angeschlossen

HINWEIS

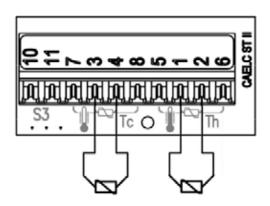
Beschädigung oder Fehlfunktion des Gerätes durch nichteinhalten der Installationsbedingungen

Fehlerhaftefunktionen bis Geräte defekt

- Anschlüsse sorgfältig kontrollieren
- Temperaturfühler nicht in der Nähe von Netzleitungen oder elektromagnetischen Störquellen verlegen (min. 50cm Abstand)
- Länge der gelieferten Signalleitungen darf nicht verändert werden

ANMERKUNG

Temperaturfühler Angaben bei 2 Leiter- Prinzip


- Anschlussklemmen T_{hot} 1 2 und T_{cold} 3 4 (bei 2 Leiter- Prinzip)
- Anschlussverdrahtung
 - Anschlussquerschnitte:

Kopffühler: min. 0.8mm² kabelfühler: min.022mm² kabellänge: < 50m

Maximale Kabellänge nach EN1434-2

Leitungsquerschnitt	Kabellänge Pt100	Kabellänge Pt500
min. 0.22mm ²	2.5m	12.5m
min. 0.50mm ²	5.0m	25.0m
min. 0.75mm ²	7.5m	37.5m
min. 1.5mm ²	15.0m	75.0m

5.4.2 Temperaturfühler 2-Leiter

- 1. CALEC® ST II spannungsfrei schalten
- 2. Frontdeckel abnehmen (siehe 4.5)
- 3. Temperaturfühler anschliessen
 - T_{hot} Klemme 1/2
 - T_{cold} Klemme 3/4
- 4. Frontdeckel schliessen

Temperaturfühler sind angeschlossen

Durchflussgeber mit Pulsausgang

HINWEIS

Beschädigung oder Fehlfunktion des Gerätes durch nichteinhalten der Installationsbedingungen

Fehlerhaftefunktionen bis Geräte defekt

Durchflussgeber nicht in der Nähe von Netzleitungen oder elektromagnetischen Störquellen verlegen (min. 50cm Abstand)

ANMERKUNG

Durchflussgeber mit passivem Signal an Pulseingang #1

Einhalten der Pulssignalspezifikationen für eingesetzten Durchflussgeber

8mA

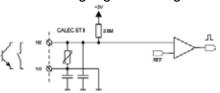
Leerlaufspannung: 8V Kurschlussstrom:

<1.5mA, >2.1mA Schaltpegel:

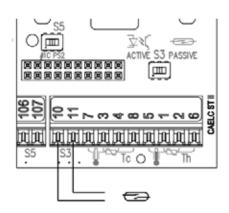
Eingangskapazität: 20nF o Frequenzbereich: 0...20Hz 0...200Hz

o Min. AUS (toff): 20ms 2_{ms} o Min. EIN (ton): 300µs 3ms

Verwendung eines Durchflussgebers mit passiven Pulssignalen


Reed Relais

SSR (Solid State Relais)


Programmiermöglichkeiten zu diesem Eingang siehe INPUTS (S.39)

Schalter S3 zur Konfiguration nutzen → \$□ Passive

Schema Eingangsschaltung

5.5.1 Durchflussgeber mit passivem Signal an Pulseingang #1

- 1. CALEC® ST II spannungsfrei schalten
- 2. Frontdeckel abnehmen (siehe 4.5)
- 3. Rechenwerk abnehmen
- Schalter S3 umschalten → \$□ **PASSIVE**
- 5. Durchflussgeber mit passiven Signal an Klemmen 10 und 11 anschliessen
- 6. Rechenwerk stecken
- 7. Frontdeckel schliessen

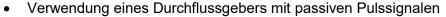
Durchflussgeber mit passiven Signal ist angeschlossen

HINWEIS

Beschädigung oder Fehlfunktion des Gerätes durch nichteinhalten der Installationsbedingungen

Fehlerhaftefunktionen bis Geräte defekt

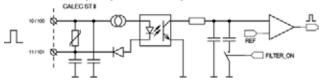
Durchflussgeber nicht in der Nähe von Netzleitungen oder elektromagnetischen Störquellen verlegen (min. 50cm Abstand)

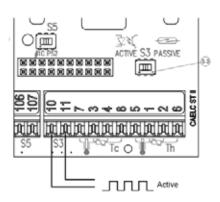

ANMERKUNG

Durchflussgeber mit aktiven Signal an Pulseingang #1

Einhalten der Pulssignalspezifikationen für eingesetzten Durchflussgeber

 Spannungsbereich: 3...48VDC Stromsignal: >2mA Verpolungssicher: -48V Galvanische Trennung: 48V

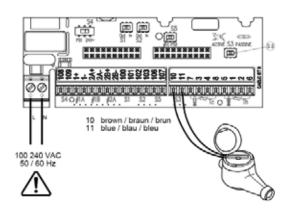

Frequenzbereich: 0...20Hz 0..200Hz Min. AUS (toff): 20ms 2ms Min. EIN (ton): 3ms 300µs


Reed Relais

SSR (Solid State Relais)

- Programmiermöglichkeiten zu diesem Eingang siehe INPUTS (S.39)
- Schalter S3 zur Konfiguration nutzen ★:←SI ACT
- Schema Eingangsschaltung

5.5.2 Durchflussgeber mit aktivem Signal an Pulseingang #1


- 1. CALEC® ST II spannungsfrei schalten
- 2. Frontdeckel abnehmen (siehe 4.5)
- 3. Rechenwerk abnehmen
- 4. Schalter S3 umschalten *:←S■ ACT
- 5. Durchflussgeber mit aktivem Signal an Klemmen 10 und 11 anschliessen
- 6. Rechenwerk stecken
- 7. Frontdeckel schliessen

Durchflussgeber mit aktivem Signal ist angeschlossen

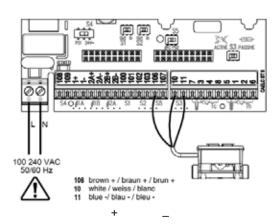
5.6 Installationsbeispiele für Durchflussgeber am Pulseingang #1

Die kommenden Beispiele beziehen sich auf die zuvor erläuterten Anschlüsse und sollen Anwendungen verdeutlichen.

5.6.1 Durchflussgeber TOPAS PMG/PMH

- 1. CALEC® ST II spannungsfrei schalten
- 2. Frontdeckel abnehmen (siehe 4.5)
- 3. Rechenwerk abnehmen
- 4. Schalter S3 umschalten → \$□ Passive
- 5. Durchflussgeber mit passiven Signal an Klemmen 10 und 11 anschliessen
- 6. Rechenwerk stecken
- 7. Frontdeckel schliessen

Durchflussgeber mit passiven Signal ist angeschlossen


ANMERKUNG

Zusammenfassung der Konfiguration bei Durchflussgeber mit passivem Signal inklusive Speisung

- Schalter S5 → \$■ (PS2)
 - Versorgt über Anschluss 106 und 107 den Durchflussgeber mit 3.3VDC
- Schalter S3 → \$■ (PASSIVE)
 - Ermöglicht empfang von passivem Pulssignal über Klemmen 10 und 11
- Klemmen 11 und 107 sind intern verbunden, ermöglicht Anschluss mit 3 Adern

5.6.2 Durchflussgeber AMFLO® SONIC UFA113 mit Speisung

- CALEC[®] ST II spannungsfrei schalten
- 2. Frontdeckel abnehmen (siehe 4.5)
- 3. Rechenwerk abnehmen
- 4. Schalter S3 umschalten → \$ Passive
- Schalter S5 umschalten → S■ PS2
- Durchflussgeber mit passiven Signal an Klemmen 10 (+) und 11 (-,GND) anschliessen
- Durchflussgeber mit Spannungsversorgung an Klemme 106 (+) anschliessen
- 8. Rechenwerk stecken
- 9. Frontdeckel schliessen

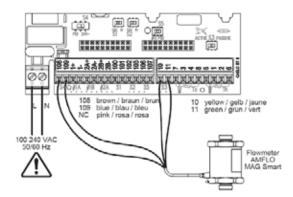
Durchflussgeber mit passiven Signal und Speisung ist angeschlossen

HINWEIS

Beschädigung oder Fehlfunktion des Gerätes durch nichteinhalten der Installationsbedingungen

Fehlerhaftefunktionen bis Geräte defekt

• Kleinspannungsversorgung beachten siehe 5.2.3

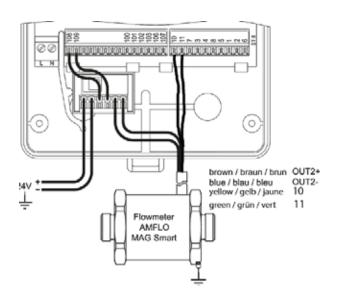

ANMERKUNG

Zusammenfassung der Konfiguration bei Durchflussgeber mit Speisung und einem Erdbezug

- Schalter S4 *:←\$■ (PS1)
 - o Versorgt über Klemmen 108 und 109 den Durchflussgeber mit 24VDC
- Schalter S3 → \$■ (PASSIVE)
 - o Ermöglicht Empfang von passivem Pulssignal über Klemmen 10 und 11

5.6.3 Durchflussgeber AMFLO® MAG Smart / MAG Basic mit Speisung und einem Erdbezug (Standard)

- 1. CALEC® ST II spannungsfrei schalten
- 2. Frontdeckel abnehmen (siehe 4.5)
- 3. Rechenwerk abnehmen
- 4. Schalter S4 umschalten *:←SI PS1
- 5. Schalter S3 umschalten → \$ Passive
- Durchflussgeber mit passiven Signal an Klemmen 10 (Imp.) und 11 (Imp. COM) anschliessen
- 7. Durchflussgeber mit
 Spannungsversorgung an
 Klemme 108 (+) und 109 (GND) anschliessen
- 8. Rechenwerk stecken
- 9. Frontdeckel schliessen


Durchflussgeber mit passiven Signal und Speisung ist angeschlossen

Zusammenfassung der Konfiguration bei Durchflussgeber mit Speisung und zwei Erdbezügen

- Schalter S4 → \$■ 24 V~
 - Der Adapter versorgt über Klemmen 108 und 109 den CALEC[®] ST II mit 24V-24V
 - Adapter versorgt über Klemmen OUT2+ und OUT2- Durchflussgeber mit isolierter Spannung 24VDC
- Schalter S3 →\$■ (PASSIVE)
 - o Ermöglicht empfang von passivem Pulssignal über Klemmen 10 und 11

5.6.4 Durchflussgeber AMFLO® MAG Smart / MAG Basic mit Speisung und zwei Erdbezügen

- 1. CALEC® ST II spannungsfrei schalten
- 2. Frontdeckel abnehmen (siehe 4.5)
- 3. Rechenwerk abnehmen
- 4. Schalter S4 umschalten → \$1 24 V~
- 5. Schalter S3 umschalten → \$ Passive
- Durchflussgeber mit passiven Signal an Klemmen 10 (Imp.) und 11 (Imp. COM) anschliessen
- 7. Durchflussgeber mit
 Spannungsversorgung an Adapter mit
 Klemmen OUT2+ (+) und OUT2(GND) anschliessen
- 8. Adapter an Klemmen 108 (OUT1+) und 109 (OUT1-) anschliessen
- Isolierte Speisung 24V-24V an Adapter mit Klemmen IN+ (+) und IN- (GND) anschliessen
- 10. Rechenwerk stecken
- 11. Frontdeckel schliessen

Durchflussgeber mit passiven Signal und Speisung mit zwei Erdungen ist angeschlossen

5.7 Pulseingänge

ANMERKUNG

Pulseingang #2

• Einhalten der Pulssignalspezifikationen für eingesetzten Durchflussgeber

Leerlaufspannung:

8V

Kurschlussstrom:

8mA

Schaltpegel:

<1.5mA, >2.1mA

Eingangskapazität:

20nF

o Frequenzbereich:

0...20Hz

0...200Hz

o Min. AUS (toff):

20ms

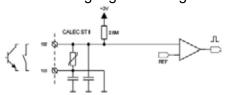
2ms

o Min. EIN (ton):

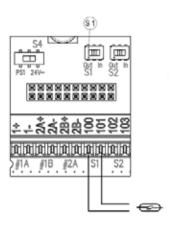
3ms

300µs

Verwendung eines Durchflussgebers mit passiven Pulssignalen


Reed Relais

SSR (Solid State Relais)


Schalter S1 zur Konfiguration nutzen P → \$□ In

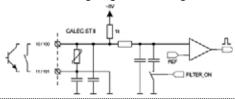
• Programmiermöglichkeiten zu diesem Eingang siehe INPUTS (S.39)

Schema Eingangsschaltung

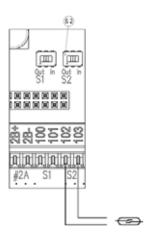
5.7.1 Pulseingang #2

- 1. CALEC® ST II spannungsfrei schalten
- 2. Frontdeckel abnehmen (siehe 4.5)
- 3. Rechenwerk abnehmen
- 4. Schalter S1 umschalten → \$1 In
- 5. Pulssignal an Klemmen 100 und 101 anschliessen
- 6. Rechenwerk stecken
- 7. Frontdeckel schliessen

Pulssignal ist angeschlossen


Pulseingang #3

• Einhalten der Pulssignalspezifikationen für eingesetztes Pulssignal


 $\begin{array}{lll} \circ & \text{Frequenzbereich:} & 0...20\text{Hz} \\ \circ & \text{Min. AUS (toff):} & \geq 50 \mu \text{s} \\ \circ & \text{Min. EIN (ton):} & \geq 50 \mu \text{s} \\ \circ & \text{Schaltschwelle R}_{\text{ON:}} & \leq 20 \Omega \\ \circ & \text{Schaltschwelle R}_{\text{OFF:}} & \geq 1 \text{M}\Omega \\ \end{array}$

- Schalter S2 zur Konfiguration nutzen P → \$1 In
- Programmiermöglichkeiten zu diesem Eingang siehe INPUTS (S.39)
- Schema Eingangsschaltung

5.7.2 Pulseingang #3

- 1. CALEC® ST II spannungsfrei schalten
- 2. Frontdeckel abnehmen (siehe 4.5)
- 3. Rechenwerk abnehmen
- 4. Schalter S2 umschalten → \$1 In
- 5. Pulssignal an Klemmen 102 und 103 anschliessen
- 6. Rechenwerk stecken
- 7. Frontdeckel schliessen

Pulssignal ist angeschlossen

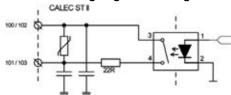
5.8 Digitalausgänge / Statussignale / Alarme

ANMERKUNG

Digitalausgang (Puls, Status, Alarm) #1 und #2

Einhalten der Pulssignalspezifikationen für eingesetztes Pulssignal

Schaltspannung: max. 48VDC, 36VAC

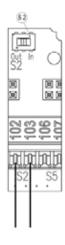

o Schaltstrom: max. 100mA

o Schaltschwelle R_{ON} : ≤25Ω o Schaltschwelle R_{OFF} : ≥1MΩ o Galvanische Trennung: max.48V o Pulsfrequenz: max.4Hz o Pulsbreite: 100ms

Schalter S1 zur Konfiguration nutzen P*:←SI Out

• Programmiermöglichkeiten zu diesem Eingang siehe OUTPUTS (S.39)

Schema Ausgangsschaltung


5.8.1 Digitalausgang (Puls, Status, Alarm) #1

- CALEC® ST II spannungsfrei schalten
- 2. Frontdeckel abnehmen (siehe 4.5)
- 3. Rechenwerk abnehmen
- 4. Schalter S1 umschalten *:←SI Out
- 5. Pulssignal an Klemmen 100 und 101 anschliessen
- 6. Rechenwerk stecken
- 7. Frontdeckel schliessen

Digitalsignal #1 kann verwendet werden

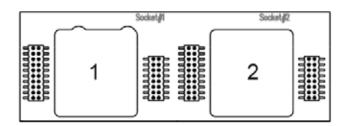
5.8.2 Digitalausgang (Puls, Status, Alarm) #2

- 1. CALEC® ST II spannungsfrei schalten
- 2. Frontdeckel abnehmen (siehe 4.5)
- 3. Rechenwerk abnehmen
- 4. Schalter S2 umschalten *:← \$■ Out
- 5. Pulssignal an Klemmen 102 und 103 anschliessen
- 6. Rechenwerk stecken
- 7. Frontdeckel schliessen

Digitalsignal #2 kann verwendet werden

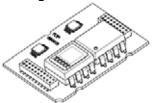
5.9 Modulsteckplätze (Kommunikations- und Funktionsmodule)

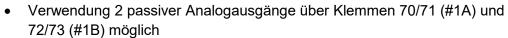
Der CALEC® ST II ist mit 2 von einander unabhängigen Steckplätzen für optionale Kommunikations- oder Funktionsmodule ausgestattet. Bestückungsabhängig führen diese 2 Steckplätze zu verschiedenen Anschlussmöglichkeiten an den Ausgängen #1A, #1B und #2A. Welche optionalen Kommunikations- oder Funktions-Module im Gerät bestückt sind, ist aus dem Anschlussschema und der Klemmennummerierung ersichtlich.


5.9.1 Funktionsübersicht Ausgänge #1A, #1B und #2A

ANMERKUNG

Steckplatz der optionalen Kommunikations- und Funktionsmodule

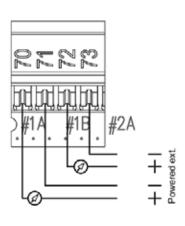



- Kommunikationsmodule können auf Steckplatz #1 oder #2 eingesetzt werden
- Das Funktionsmodul mit 2 Analogausgängen wird vorzugsweise auf Steckplatz #1 eingesetzt
 - o Auf Steckplatz #1 beide Kanäle auf Klemmen geführt
 - o Auf Steckplatz #2 nur ein Kanal auf Klemme geführt
- Steckplatz #2 wird daher vorzugsweise für Kommunikationsmodule genutzt

Klemmen	Funktion	Verfügbar an Ausgang / Modulsteck- platz
24 - 25	M-Bus	#2A und / oder #1A
90a - 91b	Modbus RTU (RS 485)	#2A und / oder #1A
90a - 91b	BACnet MS/TP (RS 485)	#2A und / oder #1A
90a - 91b	N2Open (RS 485)	#2A und / oder #1A
96a - 97b	LON TP/FT-10	#1A
98a – 99b (rot – schwarz)	KNX	#1A
70 - 71	4 - 20 mA / 0 - 20 mA	#1A und / oder #2A
72 - 73	4 - 20 mA / 0 - 20 mA	#1B
Wireless	LoRa	#2 (Nur im Fabrik vormontiert)

Analog-Modul in Socket #1

- Analogausgänge sind galvanisch getrennt
- Modulangaben
 - Strombereich
 - Speisespannung
 - Galvanische Trennung
 - o Bürde
 - Bürde

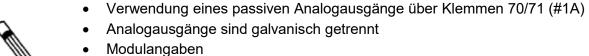

 1000

 R ext

 U ext [VDC]
- 4...20mA 0...20mA
- 6...24VDC
- max. 48VDC
- ≤ 837Ω bei 24VDC

• Programmiermöglichkeiten zu diesem Modul siehe I-Out (ab S.39)


5.9.2 Analog-Modul in Socket #1



- 1. CALEC® ST II spannungsfrei schalten
- 2. Frontdeckel abnehmen (siehe 4.5)
- 3. Passives Analogsignal 1 an Klemmen 70 (+) und 71 (-) anschliessen
- 4. Passives Analogsignal 2 an Klemmen 72 (+) und 73 (-) anschliessen
- 5. Frontdeckel schliessen
- 6. Spannung zuführen

Analog-Modul kann verwendet werden

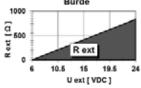
Analog-Modul in Socket #2

Strombereich

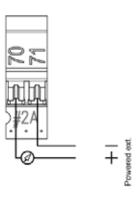
Speisespannung

o Galvanische Trennung

Bürde


Bürde 1000

6...24VDC


max. 48VDC

≤ 837Ω bei 24VDC

Programmiermöglichkeiten zu diesem Modul siehe I-Out (ab S.39)

5.9.3 Analog-Modul in Socket #2

- 1. CALEC® ST II spannungsfrei schalten
- 2. Frontdeckel abnehmen (siehe 4.5)
- 3. Analogsignal 1 an Klemmen 70 (+) und 71 (-) anschliessen

0...20mA

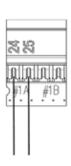
- 4. Frontdeckel schliessen
- 5. Spannung zuführen

Analog-Modul kann verwendet werden

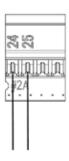

Beschreibung des M-Bus-Modul

 http://www.integra-metering.com/en/1481/CALEC%C2%AE-ST-II.htm?id=21900

ANMERKUNG


M-Bus-Modul in Socket #2 / Socket #1

- Verwendung über Klemmen 24/25 (#2A) / 24/25 (#1A)
- Analogausgänge sind galvanisch getrennt
- Verwendung von Primär- und Sekundäradresse möglich
- Einstellung der Baudrate möglich
- Werkseinstellungen
 - Primäradresse
 - SekundäradresseBaudrateSeriennummer2400Baud
- Programmiermöglichkeiten zu diesem Modul siehe M-Bus (ab S.39)
- Programmierung beider Sockets ist unabhängig voneinander möglich


5.9.4 M-Bus-Modul in Socket #1A

- 1. CALEC® ST II spannungsfrei schalten
- 2. Frontdeckel abnehmen (siehe 4.5)
- 3. M-Bus an Klemmen 24 und 25 (#1A) anschliessen
- 4. Frontdeckel schliessen
- 5. Spannung zuführen

M-Bus kann verwendet werden

5.9.5 M-Bus-Modul in Socket #2A

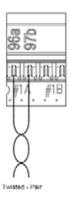
- 1. CALEC® ST II spannungsfrei schalten
- 2. Frontdeckel abnehmen (siehe 4.5)
- 3. M-Bus an Klemmen 24 und 25 (#2A) anschliessen
- 4. Frontdeckel schliessen
- 5. Spannung zuführen

M-Bus kann verwendet werden

Beschreibung des LON-Modul

 http://www.integra-metering.com/en/1481/CALEC%C2%AE-ST-II.htm?id=21900

ANMERKUNG

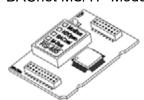

LON-Modul in Socket #1

- Twisted-Pair Verdrahtung über Klemmen 96a/97b (#1A) möglich (nicht gepolt)
- Schnittstelle ist galvanisch getrennt
- Für die Identifizierung auf dem LON-Netzwerk stehen der Service PIN und die Wink LED zur Verfügung
- Die Service LED gibt Auskunft über den Systemzustand
- Programmiermöglichkeiten zu diesem Modul siehe LON (ab S.39)

5.9.6 LON-Modul in Socket #1A

- 1. CALEC® ST II spannungsfrei schalten
- 2. Frontdeckel abnehmen (siehe 4.5)
- 3. LON an Klemmen 96a und 97b (#1A) anschliessen
- 4. Frontdeckel schliessen
- 5. Spannung zuführen

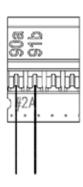
LON kann verwendet werden


Beschreibung und PICS Dokument des BACnet MS/TP-Modul

http://www.integra-metering.com/en/1481/CALEC%C2%AE-ST-II.htm?id=21900

ANMERKUNG

BACnet MS/TP-Modul in Socket #2 / Socket #1


- Twisted-Pair Verdrahtung über Klemmen 90a/91b (#2A) / 90a/91b (#1A)
- Schnittstelle ist galvanisch getrennt
- Bei Installation des CALEC® ST II am Ende des BACnet-Segments kann der interne Abschlusswiderstand eingeschaltet werden
- Programmiermöglichkeiten zu diesem Modul siehe BACnet (ab S.39)
 Werkseinstellungen:

Hersteller ID: 431BACnet-Geräteprofil: B-ASC

BACnet MAC-Adresse: Letzte 2 Stellen der Seriennummer
 Geräteinstanznummer: Letzte 5 Stellen der Seriennummer

Mode: Master Baudrate: Automatisch

5.9.7 BACnet MS/TP-Modul in Socket #1A

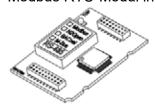
- 1. CALEC® ST II spannungsfrei schalten
- 2. Frontdeckel abnehmen (siehe 4.5)
- 3. BACnet an Klemmen 90a (+) und 91b (-) (#1A)anschliessen
- 4. Frontdeckel schliessen
- 5. Spannung zuführen

BACnet kann verwendet werden

5.9.8 BACnet MS/TP-Modul in Socket #2A

- 1. CALEC® ST II spannungsfrei schalten
- 2. Frontdeckel abnehmen (siehe 4.5)
- 3. BACnet an Klemmen 90a (+) und 91b (-) (#2A)anschliessen
- 4. Frontdeckel schliessen
- 5. Spannung zuführen

BACnet kann verwendet werden


Beschreibung des Modbus RTU-Modul

http://www.integra-metering.com/en/1481/CALEC%C2%AE-ST-II.htm?id=21900

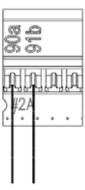
ANMERKUNG

Modbus RTU-Modul in Socket #2 / Socket #1

- Twisted-Pair Verdrahtung über Klemmen 90a/91b (#2A) / 90a/91b (#1A)
- Schnittstelle ist galvanisch getrennt
- Bei Installation des CALEC[®] ST II am Ende des Modbus-Segments kann der interne Abschlusswiderstand eingeschalten werden
- Programmiermöglichkeiten zu diesem Modul siehe Modbus (ab S.39)
- Werkseinstellungen:

Modbus Adresse:

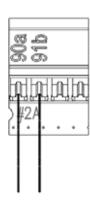
1


o Baudrate:

19200 Baud

o Parität:

Even


5.9.9 Modbus RTU-Modul in Socket #1A

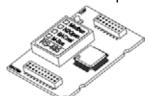
- 1. CALEC® ST II spannungsfrei schalten
- 2. Frontdeckel abnehmen (siehe 4.5)
- 3. Modbus an Klemmen 90a (+) und 91b (-) (12A)anschliessen
- 4. Frontdeckel schliessen
- 5. Spannung zuführen

RTU kann verwendet werden

5.9.10 Modbus RTU-Modul in Socket #2A

- 1. CALEC® ST II spannungsfrei schalten
- 2. Frontdeckel abnehmen (siehe 4.5)
- 3. Modbus an Klemmen 90a (+) und 91b (-) (#2A)anschliessen
- 4. Frontdeckel schliessen
- 5. Spannung zuführen

RTU kann verwendet werden

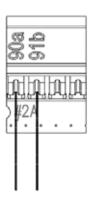

Beschreibung METASYS® N2Open-Modul

http://www.integra-metering.com/en/1481/CALEC%C2%AE-ST-II.htm?id=21900

ANMERKUNG

METASYS® N2Open -Modul in Socket #2 / Socket #1

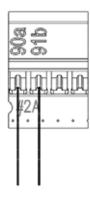
- Twisted-Pair Verdrahtung über Klemmen 90a/91b (#2A) / 90a/91b (#1A) möglich
- Schnittstelle ist galvanisch getrennt
- Bei Installation des CALEC® ST II am Ende des N2Open-Segments kann der interne Abschlusswiderstand eingeschalten werden
- Programmiermöglichkeiten zu diesem Modul siehe N2-bus (ab S.39)
- Werkseinstellungen:


N2Open Adresse:

1

o Baudrate:

9600 Baud


5.9.11 METASYS® N2Open-Modul in Socket #1A

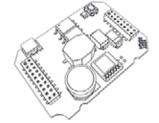
- 1. CALEC® ST II spannungsfrei schalten
- 2. Frontdeckel abnehmen (siehe 4.5)
- 3. Modbus an Klemmen 90a (+) und 91b (-) (#1A)anschliessen
- 4. Frontdeckel schliessen
- 5. Spannung zuführen

N2Open kann verwendet werden

5.9.12 METASYS® N2Open-Modul in Socket #2A

- 1. CALEC® ST II spannungsfrei schalten
- 2. Frontdeckel abnehmen (siehe 4.5)
- 3. Modbus an Klemmen 90a (+) und 91b (-) (#2A)anschliessen
- 4. Frontdeckel schliessen
- 5. Spannung zuführen

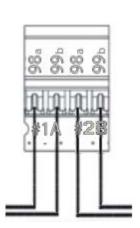
N2Open kann verwendet werden


Beschreibung des KNX Modul

http://www.integra-metering.com/en/1481/CALEC%C2%AE-ST-II.htm?id=21900

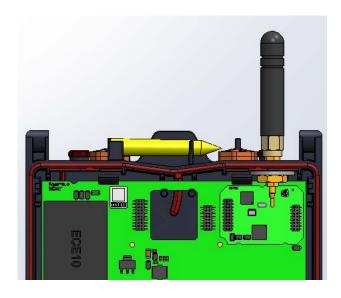
ANMERKUNG

KNX -Modul in Socket #1



- Twisted-Pair Verdrahtung über Klemmen 98a/99b, rot/schwarz (#1A) möglich
- Daisy-Chain Verdrahtung möglich (#1A / #1B)
- Schnittstelle ist galvanisch getrennt
- Werkseinstellungen:

Max. Stromaufnahme: 10mA 9600 Baud


5.9.13 KNX-Modul in Socket #1A

- 1. CALEC® ST II spannungsfrei schalten
- 2. Frontdeckel abnehmen (siehe 4.5)
- 3. KNX an Klemmen 98a/99b, rot/schwarz (#1A) anschliessen
- 4. KNX an Klemmen 98a/99b, rot/schwarz (#1B) für Daisy-Chain anschliessen
- 5. Frontdeckel schliessen
- 6
- 7. Spannung zuführen

KNX kann verwendet werden

5.9.14 LoRa-Funkmodul in Socket #2a

- 1. CALEC® ST II spannungsfrei schalten
- 2. Frontdeckel abnehmen (siehe 4.5)
- 3. Externe Antenne an die SMA-Buchse anschliessen. Antenne mit max. 5 Nm (ohne Werkzeug handfest) anziehen.
- 4. Frontdeckel befestigen.
- 5. Das Gerät an einem möglichst empfangsgünstigen Ort aufstellen.
- 6. Spannung zuführen.

Das LoRa-Funkmodul kann nun verwendet werden.

HINWEIS

- Die Antenne befindet lose im Anschlussraum des Gerätes. Der Anschlussraum ist durch öffnen des Frontdeckels zugänglich.
- Die Antenne muss vor der Inbetriebnahme gemäss Anweisung montiert werden.

ANMERKUNG

Beschreibung des LoRa-Funkmoduls

ANMERKUNG

LoRa-Modul in Socket #2

Frequenz: 868MHzVerstärkung: 0 dbImpendanz: 50 Ohm

• Anschluss Antenne: SMA Buchse

WARNUNG

Geräte dürfen nur mit angeschlossener Antenne betrieben werden. Der Betrieb ohne Antenne kann zur Zerstörung des Gerätes führen. Auch beim Wechsel der Antenne (Demontieren der Stummelantenne und Montieren der externen Magnetstandfussantenne) muss zwingend die Stromzufuhr zum Gerät unterbrochen werden.

Es dürfen nur die mitgelieferte Antenne oder für das Frequenzband geeignete Antennen verwendet werden.

Geeignete Antennen: 0 db Verstärkung, 50 Ohm Impedanz

6 Inbetriebnahme

In dieser Anleitung werden nur die für eine Funktionskontrolle notwendigen Bedienschritte beschrieben

ANMERKUNG

Weiterführende Dokumente

http://www.integra-metering.com/en/1481/CALEC%C2%AE-ST-II.htm?id=21900

WARNUNG

Verbrennungen und Lähmungen mit Todesfolge durch Stromschlag beim Berühren oder Anfassen von stromführenden Anlagenteile

Lebensgefahr durch Strom!

- Installations- und Wartungsarbeiten nur in spannungslosem Zustand durchführen
- Arbeiten an und mit Netzsapnnung dürfen nur von berechtigtem Fachpersonal unter Beachtung der geltenden Vorschriften ausgeführt werden
- Netzspannung nur an die dafür ausgewiesenen Klemmen anlegen

6.1 CALEC® ST II einschalten

- 1. Elektrische Anschlüsse prüfen
- 2. Speisung einschalten
- 3. Wird Alarm angezeigt muss dieser behoben werden
- 4. Impulswertigkeit (Imp) des Durchflussgeber überprüfen
- 5. Eibauseite (Sid) des Durchflussgeber kontrollieren
- Nach Inbetriebnahme Gehäuse schliessen
- 7. Sicherungskappen an Frontdeckel anbringen (Plombierung bei geeichten Messstellen)

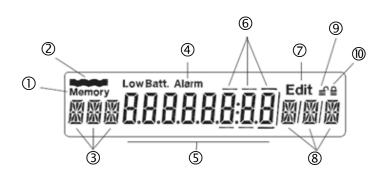
CALEC® ST II kann verwendet werden.

6.2 Funktionskontrolle

- 1. Einheit des Haupteingangs kontrollieren (Hilfszähler einstellen)
- 2. Impulswertigkeit des Haupteingangs kontrollieren (Hilfszähler einstellen)
- 3. Datum und Uhrzeit kontrollieren
- 4. Bei vorhandenem Durchfluss blinkt Durchflussindikator
- 5. Während Betrieb Momentanwerte überprüfen auf Plausibilität
- 6. Rückstellzeit der Anzeige überprüfen
- 7. Filtereigenschaften für Momentanwerte von Q und P einstellen

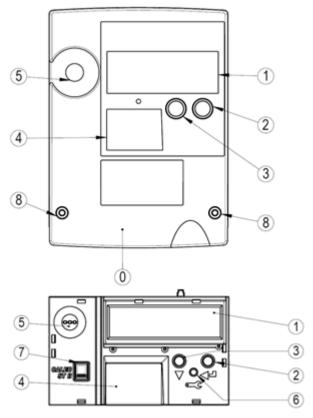
Funktionen sind überprüft und eingestellt

6.3 Anzeige


ANMERKUNG

Bedienmodi

 Mit den Bedientasten und der Anzeige k\u00f6nnen alle relevanten Einstellungen ohne Zusatzger\u00e4te vorgenommen werden. Die einstellbaren Werte sind 3 Sicherheitsniveaus zugeordnet (Lock Levels).



- User-Mode
 - Bei geschlossenem Gehäuse können über die Tasten die frei zugänglichen Daten zur Anzeige gebracht werden.
- Service-Mode
 - Kann bei geöffnetem Deckel mit der Service-Taste aktiviert werden.
 Erlaubt die Einstellung aller für die Inbetrieb- setzung notwendigen, nicht eichpflichtigen Parameter sowie die Anzeige aller Einstellungen.
- Programmier-Mode
 - Vollständige Parametrierung, inkl. eichrelevante Werte. Kann nur unter Zerstörung der Eichplombe aktiviert werden. Wird in dieser Anleitung nicht beschrieben.

- ① Speicherwerte
- ② Durchlussindikator
- 4 Identifikation
- Alarmmeldung
- S-stelliges Zahlenfeld
- ⑥ Nachkommastellen
- 7 Editier-Mode
- 8 Einheit
- Service-Mode
- **Weight State of the User-Mode**

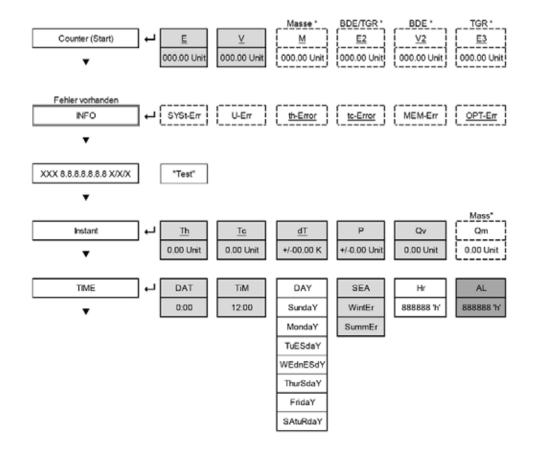
6.4 Bedienung

- ① Deckel
- ① LCD Display
- ② Enter-Taste
- 4 Auswahl-Taste
- ④ Typenschild (Eichsiegel bei Eichung)
- ⑤ Optische M-Bus Schnittstelle / Signalisierung Alarmmeldungen (rot blinkend)
- 6 Service-Taste

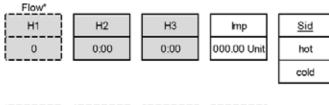
6.5 Tastenfunktionen

Tasten	Funktion			
€	Nächstes FeldGrösserer Wert			
•	Eingestellten Wert übernehmenAusgewählten Wert übernehmen			
+ länger als 1s halten	Rücksprung zur Standardanzeige "Counter"			
nalten, ebetätigen	Anzeige hochauflösend			
● halten, ● betätigen	Vorheriges FeldKleinerer Wert			
~	Service-Taste aktiviert den Edit-Mode			

6.6 Menüstruktur


Feld	Funktion
	Feld sichtbar
[[]]	Feld bei bestimmten Funktionen oder Optionen sichtbar
grau 15%	Feld im Service-Mode editierbar
grau 35%	Feld im Programmier-Mode editierbar
grau 55%	Feld nur auf Bus editierbar
weiss	Feld im Init-Mode editierbar

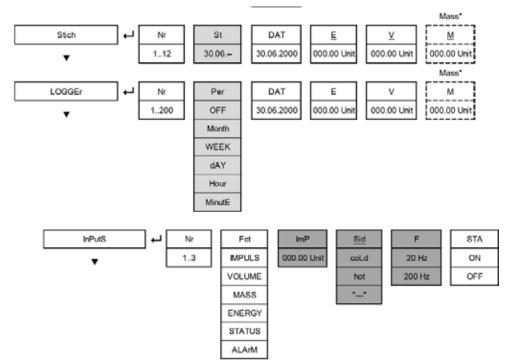
ANMERKUNG


Darstellung der Felder in der Menüstruktur ist Optionen abhängig

 Die mit * gekennzeichneten Felder sind nur sichtbar, wenn das Gerät über die entsprechende Option (Mass, BDE, TGR, Tarif & BDV, Flow, GLY) verfügt.

Anzeige	Bedeutung				
Counter	Zählwerte				
E	Anzeige Energiezähler				
V	Anzeige Volumenzähler				
M	Anzeige Massezähler (Option Masse)				
E2	Anzeige Energiezähler 2				
	(Optionen BDE/TGR)				
V2	Anzeige Volumenzähler 2 (Option BDE)				
E3	Anzeige Energiezähler 3 (Option TGR)				
H1	Anzeige Hilfszähler 1 (Option Flow) Input 1				
H2	Anzeige Hilfszähler 2 Input 2				
НЗ	Anzeige Hilfszähler 3 Input 3				
Imp	Anzeige Pulswertigkeit des Durchflussgebers				
Sid	Anzeige Einbauseite				

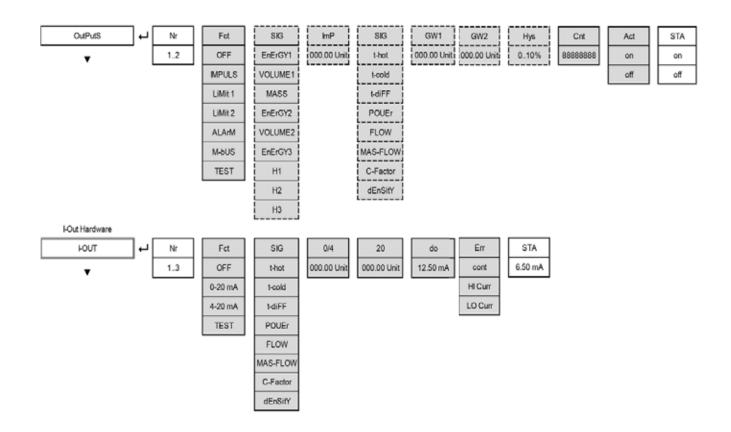
Anzeige	Bedeutung
INFO	Fehlermeldungen
SYSt-Err	Systemfehler
U-Err	Fehler in der Versorgungs- spannung
th-Error	Fehler Temperaturfühler Warmseite
tc-Error	Fehler Temperaturfühler Kaltseite
MEM-Err	Fehler im Speicher (HW)
OPT-Err	Fehler in einer Option (HW)
th-ALArM	Bereichsüberschreitung Temperatur Warmseite
tc-ALArM	Bereichsüberschreitung Temperatur Kaltseite
dt-ALArM	Bereichsüberschreitung Temperatur Differenz
Ext-AL	Externer Alarm
XX888XXX	Segmenttest



KF	DEN
0:00	0.00 Kg/l
Err	Pb
888888 'h'	2012

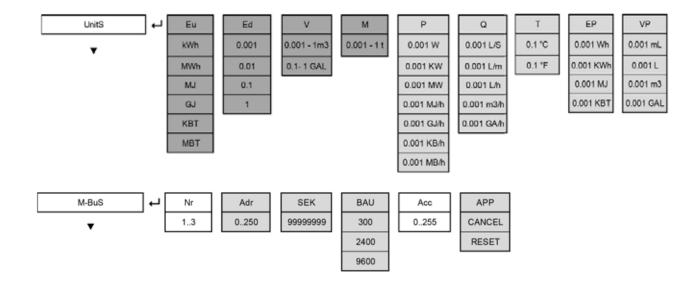
Anzeige	Bedeutung
Instant	Momentanwerte
Th	Aktuelle Temperatur Warmseite
	(bei Kühlung = Rücklauf)
Тс	Aktuelle Temperatur Kalt- seite
	(bei Kühlung = Vorlauf)
dT	Aktuelle Temperaturdifferenz
Р	Aktuelle Leistung
Qv	Aktueller Durchfluss
Qm	Aktueller Massedurchfluss
KF	Korrekturfaktor
DEN	Dichte des Mediums

Anzeige	Bedeutung		
TIME	Zeit-Parameter		
DAT	Datum		
TiM	Zeit		
DAY	Wochentag		
SEA	Winter-/Sommerzeit		
Hr	Betriebszeit des Geräts		
AL	Zeit anstehende Alarme des Geräts		
Err	Zeit anstehende Fehler des Geräts		
Pb	Jahr der Eichung		

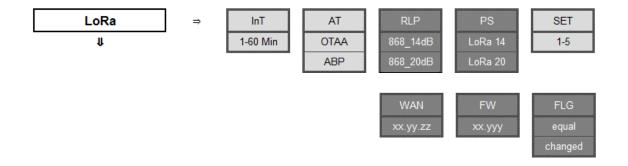

Anzeige	Bedeutung
Stich	Stichtagswerte
Nr	Stichtag Nummer 1 - 12
St	Stichtag Datum 1 - 12
DAT	Aktuelles Datum
E	Am Stichtag gespeicherter Energiezähler
V	Am Stichtag gespeicherter Volumenzähler
М	Am Stichtag gespeicherter Massezähler
E2	Am Stichtag gespeicherter Energiezähler 2 (Option BDE)
V2	Am Stichtag gespeicherter Volumenzähler 2 (Option BDE)
E3	Am Stichtag gespeicherter Energiezähler 3 (Option TGR)
H1	Am Stichtag gespeicherter Hilfszähler 1 (Option Flow)
H2	Am Stichtag gespeicherter Hilfszähler 2
H3	Am Stichtag gespeicherter Hilfszähler 3
AL	Am Stichtag gespeicherter Stand Alarmzeit
ERR	Am Stichtag gespeicherter Stand Fehlerzeit

Anzeige	Bedeutung
LOGGEr	Loggerdaten
Nr	Loggwert Nummer
Per	Logger Zeitintervall
DAT	Datum
E	Energiezähler zum Logger Zeitpunkt
V	Volumenzähler zum Logger Zeitpunkt
M	Massezähler zum Logger Zeitpunkt
E2	Energiezähler 2 zum Logger Zeitpunkt (Option BDE)
V2	(Option BDE)
E3	Energiezähler 3 zum Logger Zeitpunkt (Option TGR)
H1	Hilfszähler 1 zum Logger Zeitpunkt (Option Flow)
H2	Hilfszähler 2 zum Logger Zeitpunkt
H3	Hilfszähler 3 zum Logger Zeitpunkt

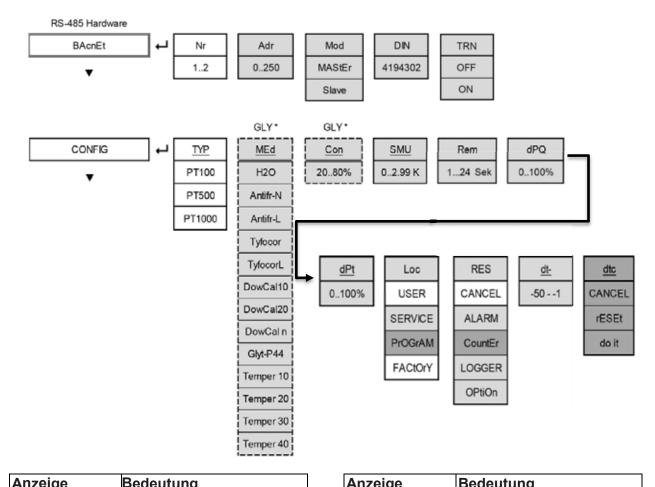
BDE.	BDE*	TGR*	Flow*					
E2	<u>V2</u>	<u>E3</u>	H1	H2	нз	AL	Err	
000.00 Unit	000.00 Unit	000.00 Unit	0	00000000	00000000	888888 11	888888	
BDE*	BDE*	TGR*	Flow*					
E2	V2	E3	[#1]	H2	Н3	Pm	AL	Err
000.00 Unit	000.00 Unit	000.00 Unit	0	00000000	00000000	+/-0.00 Unit	888888 "h"	888888 'h'



Anzeige	Bedeutung
Inputs	Parameter für Inputsignale
Nr	Nummer des Eingangs
Fct	Function des Eingangs
ImP	Pulswertigkeit des Impulsgebers
Sid	Einbauseite des Durchflussgebers (th = Warmseite, tc = Kaltseite
F	Maximale Eingangsfrequenz
STA	Aktueller Status des Eingangs
MAX	Zulässige Maximaltemperatur Grenzwert für Th-Alarm
MiN	Zulässige Minimaltemperatur Grenzwert für Th-Alarme
Tr	Rücklauftemperatur grenzwert bei Option TGR Überschreitung: Register E2 Überschreitung:Register E3

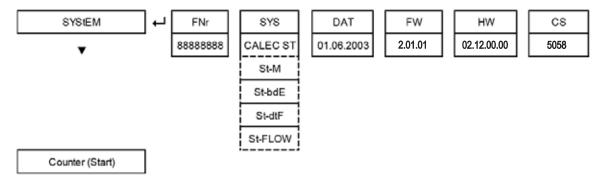

Anzeige	Bedeutung
Outputs	Parameter für Digital-Aus- gangssignale
Nr	Nummer des Ausgangs
Fct	Funktion des Ausgangs
SIG	Signalart des Ausgangs
ImP	Pulswertigkeit für Funktion des Ausgangs
GW1	Grenzwert 1
GW2	Grenzwert 2
Hys	Hysterese des Ausgangs
Cnt	Pulszähler/Dauer über- schrittener Grenzwert in Se- kunden
Act	Wirkrichtung des Ausgangs
STA	Aktueller Status

Anzeige	Bedeutung
I-Out	Parameter für Analog- Ausgangssignale
Nr	Nummer des Analogaus- gangs
Fct	Funktion des Analogaus- gangs
SIG	Typ des Analogausgangs
0/4	Wert bei 0 mA
20	Wert bei 20 mA
do	Simulation mA Wert
Err	Verhalten des Stromaus- ganges im Fehlerfall
STA	Aktueller Wert



Anzeige	Bedeutung
UnitS	Einheiten
Eu	Energieeinheit
Ed	Anzahl Nachkommastellen für Energieeinheit
V	Anzahl Nachkommastellen für Volumen
М	Anzahl Nachkommastellen für Masse
Р	Einheit für Leistung
Q	Einheit für aktuellen Durch- fluss
Т	Einheit für Temperatur
EP	Einheit für Energiepulse des Ausgangs
VP	Einheit für Volumenpulse des Ausgangs

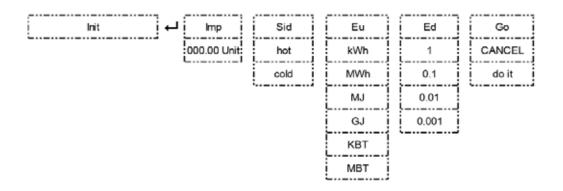
Anzeige	Bedeutung
M-BuS	M-Bus-Parameter
Nr	M-Bus Nummer (1 = Socket #1, 2 = Socket #2, 3 = optische Schnittstelle)
Adr	Primäre M-Bus Adresse
SEK	Sekundäre M-Bus Adresse
BAU	Baudrate
Acc	Zähler Auslesebefehle
APP	M-Bus Application Reset



Anzeige	Bedeutung
LoRa	LoRa-Parameter
InT (0100)	Sendeintervall (min) - einstellbar
AT	Übertragungsmodus - einstellbar
ОТАА	Wireless Aktivierung : Over the air activation
ABP	Aktivierung durch Personalisierung
RLP	Frequenz und Sendeleistung
SET	Verschiedene Sets von Registerwerten - einstellbar
WAN	LoRa WAN Version
FW	Firmware Version Modul
FLG	Flag

Anzeige	Bedeutung	
BACnet	BACnet-Parameter	
Nr	Nummer des BACnet 1 = Socket #1, 2 = Socket #2)	
Adr	Adresse der BACnet	
Mod	Modus (Master/Slave)	
DIN	BAcnet Device-Instanz- Nummer	
TRN	Abschlusswiderstand ein- /ausschalten	

Anzeige	Bedeutung
CONFIG	Allgemeine Parameter
TYP	Typ des Temperaturfühlers (Pt 100 etc.)
MEd	Typ der Glykol Mischung (Option GLY)
Con	Konzentration in % der Gly- kol Mischung (Option GLY)
SMU	Schleichmengenunterdrü- ckung
Rem	Remanenz Zeit für aktuellen Durchfluss (Haltezeit der Anzeige)
dpQ	Dämpfungsfaktor für aktuel- len Leistungs-/ Durchfluss- wert
dPt	Dämpfungsfaktor für aktuel- len Temperaturwert
Loc	Sicherheitslevel Benutzer
RES	Rücksetzen von Zählern und anderen Werten
dt-	Grenzwert zur Anzeige ei- ner dT-Unterschreitung
dtc	Automatischer Fühlerab- gleich


Anzeige	Bedeutung
SYStEM	System Parameter
FNr	Fabrikationsnummer
SYS	Rechenwerksfunktion
DAT	Fabrikationsdatum
FW	Firmware Version
HW	Hardware Version
CS	Checksumme der Firmware

ANMERKUNG

Einmalige Vorort-Einstellbarkeit der eichrelevanten Eingangsgrössen «IMP EBS»

 Sicherstellen, dass mit der gewählten Einheit die innerhalb der Eichperiode auflaufende Energiemenge ohne Zählerüberlauf abgebildet werden kann

Anzeige	Bedeutung
Init	Erlaubt eine einmalige Einstellung der Werte ImP/Sid/Eu/Ed bei Inbetriebnahme vor Ort
Go	Bestätigt die einmaligen Einstellungen bei Inbetriebnahme

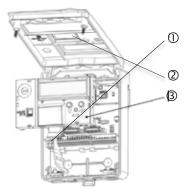
7 Instandhaltung und Wartung

WARNUNG

Verbrennungen und Lähmungen mit Todesfolge durch Stromschalg beim Berühren oder Anfassen von stromführenden Anlagenteile

Lebensgefahr durch Strom!

- Installations- und Wartungsarbeiten nur in spannungslosem Zustand durchführen
- Arbeiten an und mit Netzsapnnung dürfen nur von berechtigtem Fachpersonal unter Beachtung der geltenden Vorschriften ausgeführt werden
- Netzspannung nur an die dafür ausgewiesenen Klemmen anlegen


7.1 Eichung

ANMERKUNG

Geräte im geschäftlichen Verkehr

- Periodische Nacheichung nach nationalem Eichgesetz ist vorgeschrieben
- Für Energiezähler beträgt das Eichintervall in der Regel 5 Jahre
- Alle eichrelevanten Funktionalitäten befinden sich auf dem steckbaren Rechenwerkmodul
- Einfacher Austausch des Rechenwerkmoduls reicht aus für Eichung
- Gehäuseunterteil mit Feldverdrahtung muss für Eichung nicht demontiert werden
- Geräte spezifische Einstellparameter sind redundant im Gehäuseunterteil gespreichert
- Neues Rechenwerk aktualisiert sich beim Aufstecken automatisch
- Bei Weiterverarbeitung nach Eichung sind Zählerstände des neuen Rechwerkmoduls auf 0 zurückgesetzt

7.1.1 Rechenwerk austauschen

- 1. CALEC® ST II spannungsfrei schalten
- 2. Frontdeckel abnehmen (siehe 4.5)
- 3. Rechenwerk abnehmen

Rechenwerk kann geeicht werden

8 Störung und Fehlermeldung

ANMERKUNG

Signalisierung des Alarms

- Im Störfall wird die Meldung "Alarm" in der Anzeige eingebelndet
- Alarmmeldung wird durch ein rotes blinken der optischen M-Bus-Schnittstelle signalisiert.
- Der Fehler-/Alarmgrund kann in der INFO-Schleife anhand einer Kurzmeldung bestimmt werden

Meldung	Fehler / Alarm	Mögliche Ursache	Massnahmen
th-ERROR	Fehler Temperatur Warmseite, keine Messung möglich	 Fühler falsch ange- schlossen Unterbruch/Kurzschluss der Fühlerleitungen 	 Verdrahtung kontrollieren Abgeklemmte Fühler- leitungen mit Ohmme- ter überprüfen Wenn OK den Ein- gang mit einem Wi- derstand überprüfen: Pt 100: 100 - 150Ω Pt 500: 500 - 620Ω
tc-ERROR	Fehler Temperatur Kaltseite, keine Mes- sung möglich	Siehe oben	Siehe oben
SYSt-Error	Speicherfehler EEPROM	Bauteil-/Gerätefehler	Gerät zur Überprü- fung einsenden
th-ALArM	Temperatur Warmseite ausserhalb des zu- lässi- gen Messbereiches	Temperatur des Wärme- kreislaufs zu hoch oder zu tief	Aktuelle Tempera- tur im Untermenü InStAnt überprüfen
tc-ALArM	Temperatur Kaltseite ausserhalb des zu- lässi- gen Messbereiches	Siehe oben	Siehe oben
dt-ALArM	Temperaturdifferenz ausserhalb des zu- lässi- gen Messbereiches	 Temperaturdifferenz im Wärmekreislauf zu gross oder negativ Fühlerproblem 	Aktuelle Tempera- tur- differenz im Un- termenü InStAnt überprüfen

9 Ausserbetriebnahme, Demontage und Entsorgung

9.1 Ausserbetriebnahme

Trennen Sie alle Energiequellen. Entfernen Sie das Gerät aus dem System. Speziell die Anweisungen im Abschnitt 9.3 beachten.

9.2 Entsorgung

Am Ende des Lebenszyklus sollte dieses Produkt entsprechend den lokalen Vorschriften der Wiederverwertung oder Beseitigung zugeführt werden.

Batterien und Akkus entfernen und separat entsorgen.

Die getrennte Sammlung und das Recycling von Altgeräten hilft, natürliche Ressourcen zu schonen und sicherzustellen, dass sie in einer

Weise entsorgt werden, die den Schutz von Umwelt und Natur gewährleisten.

10 Technische Daten

Die Tabellen zeigen die technischen Daten der verfügbaren Funktionen. Die möglichen Kombinationen entnehmen Sie bitte der Preisliste.

Normen	
CE Richtlinien	2014/32/EU (MID) Messgeräterichtlinie
	2014/30/EU (EMV) Elektromagnetische Verträglichkeit
	2014/35/EU (NEV) Niederspannungserzeugnisse
	2012/19 EU WEEE Richtlinie
Normen	EN 1434, EN 61000-6-1, EN 61000-6-2, EN 61010,
INOTHIETI	DIN 43863-5

Gehäuse und Betriebsbedingungen		
Abmessungen	B x H x T = 120 x 163 x 49 mm	
Umgebungstemperatur	+5 +55 °C, EN 1434 Klasse C	
Lagertemperatur	060 °C	
Feuchte	Max. 95 % rel. Feuchte nicht kondensierend	
Einsatzhöhe	Bis 2000 m über NN	
Schutzart	IP 54	
Anschlussklemmen	Federklemmen 1.5 mm ² , Netzanschluss Schraubklemmen	
	2.5 mm ²	

Grunddaten Rechenwerk Temperaturmessbereich	0+200 °C (Wärmeträger Wasser) -40+180 °C (Spezielle Wärmeträger)	
Temperaturdifferenz	0190 K, Bauartzulassung 3190 K wahlweise 2190 K	
	Pt 100 oder Pt 500 nach IEC 751 gepaart nach EN 1434,	
Temperaturfühler	in 2- oder 4 Leiteranschluss	
remperaturiumer	Max. Fühlerkabellänge 2-Leiteranschluss 10 m, 4-Leiteranschluss 15 m	
Auflösung	Auflösung 20 Bit, typisch ±0.005 K (Ta = 555 °C)	
Temperaturmessung	Autiosuting 20 Bit, typiscit 10.000 it (1a = 000 °C)	
Einbauseite	Warm- oder Kaltseite	
Impulswertigkeit des	0.0019999.999 Liter	
Durchflusssensors	0.0013333.333 Elici	
Impulswertigkeiten und Ein-	Volumen: 0.0019999.999 ml, l, m ³ , GAL	
heiten für Hilfseingänge	Energie: 0.0019999.999 Wh, kWh, MWh, MJ, KBTU	
bzw. Kontakt-Ausgänge		
	Besser als für Rechenwerke nach EN 1434-1 gefordert.	
Fehlergrenzen	Geeignet für kombinierte Wärmezähler der Klasse 2 nach	
	EN-1434-1 bei Verwendung geeigneter Durchflussgeber	
Optische Schnittstelle	IEC 870-5, M-Bus-Protokoll	

Anzeige	
Anzeige-Einheiten Volumen	m³, USGal
Anzeige-Einheiten Energie	kWh, MWh, MJ, GJ, KBTU, MBTU
Datensicherung bei fall	In EERPOM >10 Jahre
Datenlogger	500 Werte aller Zählerstände mit Zeitstempel in Ringspeicher
	Loggerintervall: 1 Min, 1 Std, 1 Tag, 1 Woche, 1 Monat

Zusatzfunktionen	Funktion zur Unterdrückung der Energieberechnung
Einstellbare Schleichmen-	bei zu kleiner Temperaturdifferenz,
genunterdrückung (SMU)	ΔT SMU einstellbar ΔT = 0 - 2.99 K
Grenzwertüberwachung	Einseitig oder zweiseitig, Hysterese 0 - 10 %,
Grenzwertuberwachung	Wirksinn des Ausgangssignals wählbar

Netzausführung	
Spannungsversorgung	100 - 240 VAC, 50/60 Hz, max. 5W (nach EN 1434)
	12 - 42 VDC oder 12 - 36 VAC, max. 1 VA (nach EN 1434).
	Bei Speisung via Adapter «isolierte Speisung 24V-24V»
	(ArtNr. 80828)
	24 VDC ±20%, max. 7 Watt (am Adapter)
Rechenzyklus	1 s
Stützbatterie Echtzeituhr	3.6 V Lithium-Batterie

Kleinspannungsversorgung für Durchflussgeber		
	Klemmen 108 / 109	Klemmen 106 / 107
	(je nach Ausführung)	
Versorgungsspannung	24 VDC, max.150 mA,	3.6 VDC, max. 2 mA
	galv.Trennung max.48V VDC	
Durchflussgeber	z. B. AMFLO [®] MAG Smart	z. B. AMFLO [®] SONIC UFA
	oder aktive Geber	113

Impuls Ein- und Augänge				
	Anschluss eines Impulsgebers nach NAMUR, mit potenzialfreiem Kontakt			
(10/11)		. •	Relais) oder auch für al	
	folgenden Werten			
	Eingang passiv		Eingang aktiv	
	Leerlaufspannung	8 V	Spannungsbereich	348 VDC
	Kurzschlussstrom	8 mA	Stromsignal	>2 mA
	Schaltpegel	<1.5 mA, >2.1 mA	Verpolungssicher	48 V
	Min. AUS /t off)	20 Hz 20 ms	Galvanische Trennung	48 V
	Min. EIN (t on)	20 Hz 3 ms	Min. AUS /t off)	20 Hz 20 ms
	Min. AUS (t off)	200 Hz 2 ms	Min. EIN (t on)	20 Hz 3 ms
	Min. EIN (t on)	200 Hz 300 μs	Min. AUS (t off)	200 Hz 2 ms
	Eingangskapazität	:20 nF	Min. EIN (t on)	200 Hz 300 μs
Umschaltbarer	Eingang		Ausgang	
Ein- und Ausgang	Leerlaufspannung	8 V max	Schaltleistung	48 VDC, 100 mA
Ausgang#1 /	Schaltpegel	<1.5 mA, >2.1 mA	Galvanische Trennng	48 V
Eingang #2	Min. AUS /t off)	20 Hz 20 ms	Kontakt Widerstand or	<30 Ω
(100/101)	Min. EIN (t on)	20 Hz 3 ms	Kontakt Widerstand of	f>10 MΩ
	Min. AUS (t off)	200 Hz 2 ms	Pulsfrequenz	max. 4 Hz
	Min. EIN (t on)	200 Hz 300 μs	Pulsbreite	100 ms
	Eingangskapazität	:20 nF		
Umschaltbarer	Eingang		Ausgang	
	Leerlaufspannung		Schaltleistung	45 VDC, 100 mA
Ausgang #2 /	Kurzschlussstrom	Αμ 008	Galvanische Trennung	48 V
Eingang #3 (102/103)	Schaltpegel	<1.4, >3.2 kΩ	Kontakt Widerstand or	<30 Ω
	Pulslänge t off	20 ms	Kontakt Widerstand of	F>10 MΩ
	Pulslänge t on	3 ms	Pulsfrequenz	max. 4 Hz
	Max. Frequenz	20 Hz	Pulsbreite	100 ms
	Eingangskapazität	:20 nF		

Option M-Bus	Werkseinstellungen
M-Bus Schnittstelle	nach EN 13757-2/-3
Adressen	Primäradresse: 0
	Sekundäradresse: Seriennummer
Baudrate	2400 Baud

Option Modbus RTU	Werkseinstellungen
Physical layer und Ad-	RS 485, / Adresse: 1
resse	
Baudrate	19200
Adressbereich (Slave)	1247
Parität	Even
Function Code	03: Read holding register

Option LON Schnittstelle	Werkseinstellungen	
Тур	LON TP-FT 10, free topology (2-Draht twisted pair),	
	zertifiziert nach LONMARK [®] 3.4	
Baudrate	78 kBaud	
Max. Buslänge	500 m / 2700 m ohne/mit Abschlusswiderständen,	
	64 Knoten pro Segment	

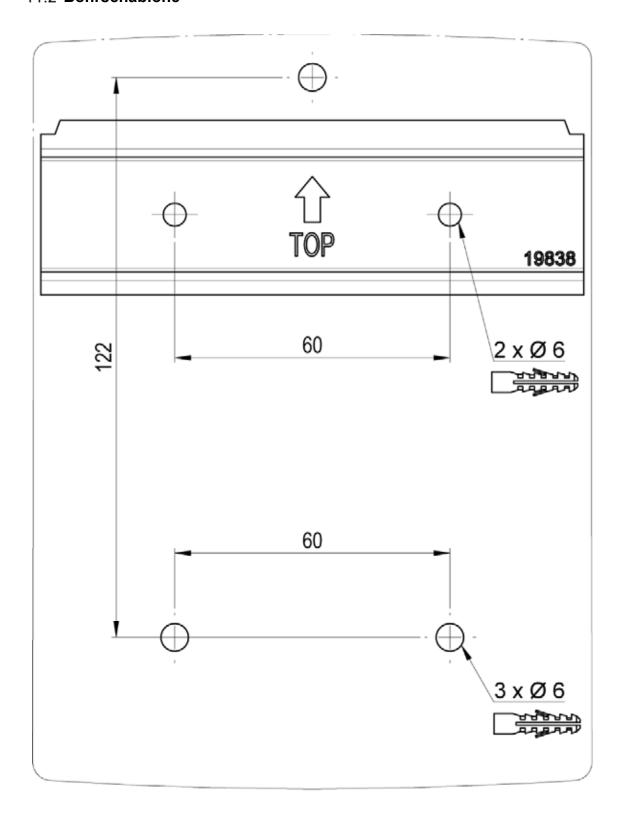
Option BACnet MS/TP	Werkseinstellungen
Physical layer und AMT ID	RS 485 / ID: 431
BACnet Geräteprofil und -in-	B - ASC / die letzten 5 Stellen der Seriennummer
stanz	
BACnet MAC Adresse	die letzten 2 Stellen der Seriennummer
Baudrate und Mode	Automatisch / Master

Option N2Open	Werkseinstellungen
Physical layer und Ad-	RS 485 / Adresse: 1
resse	
Baudrate	9600

Option 2 Analog-Ausgänge		
Ausgangssignal	420 mA oder 020 mA	
Speisespannung	624 VDC	
Galvanische Trennung	max. 48 VDC	
Maximale Bürde	≤ 837 Ohm bei 24 VDC, 0 Ohm bei 6 V	
Maximaler Wandlerfehler	0.15% vom Messwert + 0.15% vom Endwert	

Option KNX	
Тур	TP1 (2-Draht twisted pair), zertifiziert nach KNX-Standard 2.1
Max. Stromaufnahme	10 mA
Baudrate	9600

Option LoRa	
Тур	LoRa WAN
Max. Stromaufnahme	50 mA
Independanz Antenne	50 Ohm
Verstärkung	0 db
Anschluss Antenne	SMA Buchse


11 Anhang

11.1 CE- Zertifikat

Die Konformitätserklärung kann durch Scannen des QR-Codes aufgerufen werden.

11.2 Bohrschablone

