

Montage und Bedienungsanleitung Instructions de montage et mode d'emploi

AMBUS® Log 20

M-Bus Fernanzeige und Datenlogger für bis zu 20 Endgeräte Terminal d'affichage à distance et enregistreur de données M-Bus pour jusqu'à 20 compteurs

Beschreibung

Das Gerät AMBUS® Log 20 kann als transparenter Pegelwandler sowie als Fernanzeige mit Tastaturbedienung oder Fernsteuerung betrieben werden. Der Datenlogger bietet die Möglichkeit, das Busnetz zeitgesteuert auszulesen und die Daten im internen Speicher zu sammeln. Die Geräte werden mit 1 MByte Datenspeicher ausgeliefert. Ausführungen mit 2 oder 4 M-Byte Datenspeicher sind auf Anfrage erhältlich.

Der M-Bus ist ein preiswertes, zweiadriges Feldbussystem zur Auslesung und Fernspeisung von Verbrauchszählern (Wärme, Gas, Wasser, Strom...). Die physikalische Schicht und grundlegende Protokollelemente wurden in der europäischen Norm EN-1434 festgelegt.

Installation und Inbetriebnahme

Anschlussplan

RS232 PC:		PC-Schnittstelle für Service- und Pegelwandlerbetrieb		
RS232 MODEINI:		Modem-Schnittstelle für Service- und Pegelwändlerbetrieb		
M-Bus:	M+, M-	M-Bus Anschluss (3 Klemmenpaare). M-Bus-Endgeräte werden zueinander parallel geschaltet.		
		Dabei ist die Polung unerheblich.		
		Die Symbole +, - dienen nur zur Unterscheidung der Bus-Leitungen.		
	는 는	Erdung zur Symmetrierung des M-Bus		
Power:	V+	Versorgungsspannung positiver Anschluss bei DC (10s28VDC)		
	V-	Versorgungsspannung negativer Anschluss bei DC		
		 Polung bei AC beliebig, 1327VAC 		
		Achtung: Keine Netzspannung anschliessen! Dies führt zur Zerstörung des Gerätes!		
LED-Anzeige:		Grüne LED leuchtet Microcontroller betriebsbereit		
		(Versorgungsspannung liegt an).		

RS-232 Schnittstellen

Der M-Bus kann über ein RS-232-Interface angesteuert werden. Ein PC wird an die rechte DB9-Buchse, ein Modem and den linken DB9-Stecker angeschlossen. Nur eine dieser Anschlussmöglichkeiten darf gleichzeitig genutzt werden. Sie können ein 1:1 belegtes Kabel zum PC oder das mit dem Modem gelieferte Kabel zum Modem verwenden.

Belegung der DB9-Buchse

Pin	Buchse	Stecker	Belegung Buchse	Belegung Stecker	
2	RXD	TXD	Senden zum PC	Empfang vom Modem	
3	TXD	RXD	Empfang vom PC	Senden zum Modem	
4	-	DTR	Unbenutzt	Immer aktiv	
5	GND	GND	Bezugspotential	Bezugspotential	
7	RTS	CTS	Unbenutzt	Immer aktiv	
8	CTS	RTS	Immer aktiv	Unbenutzt	

Gleichzeitig mehrere Schnittstellen

Bei Auslesung über die Tastatur der Fernanzeige oder im Falle einer automatischen Auslesung werden die RS-232-Schnittstellen vom Bus abgetrennt. Dies kann zu temporären Störungen führen. Ausserdem findet während der Bedienung über Tastatur oder serielle Schnittstelle keine automatische Zählerauslesung beim Datenlogger statt.

Installationshinweise

- Zähler-IDs der verschiedenen Liegenschaften / Wohnungen notieren
- ggf. Zähler bzw. Pulsadapter konfigurieren
- M-Bus Fernanzeige / Datenlogger montieren und konfigurieren (via Tastatur oder mit der Konfigurationssoftware FService über Laptop oder Modem)
- mit PasscodeB (Voreinstellung 00001767) einloggen
- unter "Anzeigen Konfig" Baudratenbereich, Suchmodus usw. einstellen.
- via Zählerliste/Such-Automatic Zählersuche starten
- Zählerliste auf Vollständigkeit überprüfen, ggf. fehlende Zähler nachtragen.
- Passcodes ändern (zumindest Passcode B)

Fehlerbehebung

- Die grüne LED leuchtet nicht:
- Versorgungsspannung überprüfen.
- Display zeigt "Status Kurzschl": Überprüfen Sie die M-Bus Verdrahtung auf Kurzschlüsse oder Erdschleifen. Defekte Zähler können ebenfalls Ursache von Überströmen sein. Eingrenzung des Fehlers durch Abklemmen einzelner Bussegmente. Defekte Zähler oder offene Kabelenden
- Zählersuche: Zähler nicht gefunden: Suche wiederholen, Baudraten und Adressen prüfen. Zähler von Hand eintragen und mit Einzelauslesung Kommunikation überprüfen.
- Keine Antwort vom Zähler: Baudrate und Adresse prüfen. Netzausdehnung prüfen: Busspannung am Zähler muss >24V sein, andere Bussegmente abklemmen.
- "Status: Fehler":

Im Grundzustand die beiden äusseren Tasten gleichzeitig drücken, um die Fehlerliste anzeigen zu lassen. Fehlercodes notieren, und Fehlerliste löschen, indem die -->Taste betätigt wird. Die wichtigsten Fehlercodes sind im Anhang entschlüsselt.

Falscher Passcode

Falls Sie den Passcode vergessen haben, gehen Sie bitte wie folgt vor:

Erst die Schritte aus "Status: Fehler" (s.o.) ausführen und die →Taste nochmal betätigen. Den am LCD angezeigten 16-stelligen Text notieren Sie sich bitte und senden diesen zusammen mit der Firmware-Version und der Serien-Nr. per Email an info@aquametro.com. Wir senden Ihnen dann umgehend einen gültigen Passcode zu.

Beschreibung des Pegelwandlers

Funktion

Die RS-232C Schnittstellen sind im Normalbetrieb auf den M-Bus durchgeschaltet, ausser wenn

- die Tastatur bedient wird oder
- der Datenlogger eine automatische Auslesung durchführt.

Externe Steuergeräte (Laptop, GLT..) können somit während der inaktiven Zeit über diese Schnittstellen auf den M-Bus zugreifen. Dabei muss auf den Steuergeräten eine Software laufen, die die Protokolle der angeschlossenen Zähler verarbeiten kann. Das Gerät AMBUS[®] Log 20 kann bis zu 20 Standardzähler mit Energie versorgen.

Technische Daten

Versorgung:	Spannung:	1128 VDC, 5W 1328 VAC, 9W
Umgebung:	Temperatur Betrieb: Temperatur Lagerung: Feuchte:	0+45 °C -10+60 °C 1070 % (nicht kondensierend)
Gehäuse:	Abmessungen: Schutzart: Material / Farbe:	B x H x T = 105 x 94 x 58 (mm) IP 20 Noryl / lichtgrau (ähnlich RAL 7035)
Gewicht:	0,23 kg	

M-Bus-Spezifikationen

Parameter	min.	typ.	max.	Einheit
max. Anzahl Standardlasten (Endgeräte): MR005FA/DL	3			
max. Anzahl Standardlasten (Endgeräte): MR006FA/DL	20			
Innenwiderstand des Masters			100	Ω
Busspannung Mark (@ 0mA)	29,0	30,5	32,0	V
Busspannungs-Absenkung bei Space	12	12,5	13	V
Überstromabschaltung	50	60	70	mA
Bitsschwelle Slave => Master		7		mA

1 Standardlast = 1,5mA

Planung von M-Bus-Netzen

Bei der Planung von M-Bus Netzen sind zwei Effekte zu beachten. Zum einen dürfen die Signale nicht aufgrund der Netzkapazität zu stark verzerrt werden. Die Netzkapazität wird wesentlich durch die Ausdehnung des Netzes, d.h. durch die Summe aller angeschlossenen Kabellängen bestimmt. Mit niedrigeren Baudraten können auch ausgedehntere Netze betrieben werden.

Zum anderen ist sicher zu stellen, dass auch das entfernteste Endgerät noch mit 24V versorgt wird. Der Spannungsabfall auf der Busleitung ergibt sich aus dem Sendestrom von 20mA, den Versorgungsströmen der Endgeräte des betrachteten Zweiges, dem Innenwiderstand des M-Bus Masters, dem Widerstand des Buskabels und Übergangswiderständen. Je weniger Slaves an einem Zweig angeschlossen sind und je größer der Kabelquerschnitt, desto grösser kann die Entfernung eines Endgerätes vom Master sein.

Der maximal erlaubte Leitungswiderstand lässt sich bei M-Bus Display durch folgende Gleichungen abschätzen:

Für ein Telefonkabel JYSTY nx2x0.8 (75 Ω /km, 150nF/km) werden folgende Werte erwartet:

Baudrale 9000	Baud 2400 Bauc	1 300 Baud	
max. Netzausdehnung (@150nF/km): 1 km	4 km	12 km	

Anzahl der Standardlasten Maximale Entfernung zum Zähler (@75Ω/km)				
(Zähler) des Netz-Zweiges	bei Gleichverteilung	Alle Zähler am Ende		
3	4,0 km	4,0 km		
20	2,5 km	1,5 km		

Durch den Einsatz von Repeatern (M-Bus-Verstärker) können M-Busnetze noch grössere Entfernungen überbrücken und beliebige Ausdehnungen erreichen. Zu beachten ist lediglich, dass auch für die Repeater eine Netzversorgung notwendig ist.

Schirmung

Untersuchungen haben gezeigt, dass eine Schirmung des M-Bus-Kabels nicht zwingend erforderlich ist. Unter gar keinen Umständen darf eine der Busleitungen Kontakt zum Schirm oder zur Erde haben.

Beschreibung der M-Bus Fernanzeige

Funktion

Mit der M-Bus Fernanzeige können Zähler über die Tastatur ausgelesen und deren Zählerstand auf dem Display angezeigt werden. Ein Ableser ist damit in der Lage, von einem Punkt aus eine Vielzahl von Zählern auszulesen, ohne z.B. die Wohnungen betreten zu müssen und ohne Verwendung eines PC. Der sog. Kommandomodus ermöglicht zudem die Zählerfernauslesung über ein Standardmodem. Dieser Modus wird vom Windows-Programm FService unterstützt.

Einrichtung

Zugang zum Menüsystem (s.u.) erhält man nach Eingabe des Passcodes (Voreinstellung: 00001767). Wichtig ist die Erzeugung der Zählerliste, auf deren Basis später die Auslesungen erfolgen. Die automatische Zählersuche kann deutlich beschleunigt werden, wenn beim Suchmodus und im Baudratenbereich Einschränkungen gemacht werden können (z.B. Verzicht auf 300 Baud). Diese Einstellungen können im Menü "Anzeigen Konfig" vorgenommen werden. Dabei sollte auch Passcode B geändert werden, um unberechtigten Personen den Zugang zu den Einstellungen und Passcodes zu sperren.

Fehlermeldungen

Grenzlast und Überstromsituationen werden nicht nur über die LEDs, sondern auch am LCD angezeigt. Treten bei der Verarbeitung der Daten Fehler auf, so wird in der Statuszeile "Fehler" angezeigt. Im Grundzustand kann durch gleichzeitiges Drücken der beiden äusseren Tasten eine "Fehlerliste" angezeigt werden. Eine Tabelle der Fehlercodes ist im Anhang angegeben. Zum Löschen der Fehlerliste ist die →Taste zu drücken. Bei Spannungsausfall wird die Liste ebenfalls gelöscht.

Passcodeschutz

Beim Passcodeschutz ist zwischen 3 Modi und 2 Passcodeebenen zu unterscheiden: Im Standard-Modus wird nach Tastendruck zur Eingabe des Passcodes aufgefordert. Dabei ist mit dem Passcode A (Ableser-Passcode) nur eine untere Passcodeebene zugänglich. Ein Hausmeister oder Mieter hat damit Zugriff auf die Einzelauslesung via Zählerliste und die Auslesung des gesamten Netzes. Eine Veränderung der Zählerliste oder von Einstellungen der Fernanzeige sind damit nicht möglich. Um auch diese Menüs zu erreichen muss statt des Passcodes A der Passcode B eingeben werden. Bei Auslieferung ist für Passcode A 00000000 und für Passcode B 00001767 eingestellt. Damit muss die Passcodeabfrage für Ebene A einfach nur mit der E-Taste abgeschlossen werden. Da mit Passcode B auch die Passcodes verändert werden können, wird dringend empfohlen, für Passcode B einen eigenen Code einzugeben. Die Einstellungen können in den Menüs Anzeigen Konfig / Passcode A bzw. Anzeigen Konfig / Pass-code B vorgenommen werden.

Zugriff via ID-Modus: Um strenge Datenschutzvorschriften erfüllen zu können, kann die Fernanzeige auch so konfiguriert werden (Anzeigen Konfig / Passcode-Modus), dass ein Mieter nicht auf die Zählerdaten der anderen Mieter zugreifen kann. Nach dem ersten Tastendruck erscheint dabei ein spezielles Menü "Zugriff via ID". Hier wird die Eingabe einer ID erwartet, um den zugehörigen Zähler auszulesen. Nach Eingabe der ID 00000000 erscheint die Passcodeabfrage, über die der Systemadministrator wie oben beschrieben Zugriff auf alle Menüs erhält.

Zugriff via Adr-Modus: Dieser Modus ermöglicht die direkte Auslesung von Zählern über deren Primäradresse. Hier erfolgt allerdings kein Zugriffsschutz. Der Ablauf ist ähnlich wie oben beschrieben. Da die Adresse 254 vorgegeben ist, kann durch einfaches Betätigen der E-Taste die Auslesung erfolgen, wenn nur ein Zähler angeschlossen ist. Durch 3-maliges Bewegen des Cursors mit der → Taste wird die Adresse seingabe verlassen und die Passcodeabfrage für den Zugang zu den Menüs aktiviert.

Tastaturbedienung

Neben der Steuerung über PC-Kommandos, gestatten auch die vier Tasten und das beleuchtete Display eine komfortable Bedienung des Gerätes. Die Tasten verfügen über einen deutlich spürbaren Druckpunkt und Tastendrücke werden zusätzlich durch einen Signalton quittiert Die Auswahl eines Menüpunktes und die Eingabe von Ziffernfolgen ist unten beschrieben. Wird für einige Minuten keine Taste betätigt, so kehrt das Gerät automatisch in den Ruhezustand zurück.

Auswahl eines Menüpunktes: Mit den Pfeiltasten kann der Auswahlpfeil im Display auf den gewünschten Menüpunkt bewegt werden. Durch Drücken der Taste E [blau] wird der ausgewählte Menüpunkt aktiviert. Die Taste C [rot] ermöglicht den Abbruch der Eingabe und das Verlassen eines Menüs.

Nach Eingabe des Passcodes und Abschluss der Eingabe mit der E-Taste gelangt man ins Hauptmenü. Hier sind zunächst die Punkte "Netzauslesung" und "Einzelauslesung" sichtbar. Durch Betätigung der ↓Taste wird ein neuer Ausschnitt des Hauptmenüs angezeigt und "Einzelauslesung" ausgewählt. Durch Drücken der E-Taste wird das selektierte Untermenü aktiviert.

Eingabe der Ziffernfolge

Die ↓ Taste dient zur Auswahl einer Ziffer. Je Tastendruck wird die Ziffer um eins erniedrigt. Nach 0 wird wieder mit 9 begonnen. Über die →Taste wird die nächste Stelle ausgewählt. Auch die Auswahl der Stellen ist umlaufend, d.h. nach der letzten Stelle wird der Cursor wieder auf die erste Stelle gesetzt. Unabhängig von der Cursorposition kann die Eingabe durch die E-Taste abgeschlossen werden. Zum Abbruch der Eingabe dient die C-Taste.

Anzeige der Daten

Damit die Anzeige übersichtlich bleibt, werden nur ausgewählte Datensätze angezeigt (siehe Datenfilterung). Dabei muss zwischen der Anzeige von aktuellen Werten und Stichtagswerten, zwischen verschiedenen Tarifen und Untereinheiten des Gerätes (z.B. bei Wärmezählern mit integrierten Pulsadaptern) unterschieden werden.

Damit die Daten einem Zähler zugeordnet werden können, sind in Zeile 1 immer Primäradresse und ID angegeben. Zudem wird die erste Zeile zur Wiedergabe des Tarifs verwendet. Der Tarifnummer ist dabei ein "T" vorangestellt.

A: aktuelle Werte (Speicher Nr. 0)

B: Stichtagswerte (Speicher Nr. 1)

E: Fehlerflag gesetzt

Ziffer: Nr. der Untereinheit

In der zweiten Zeile wird der Stichtag oder der Zählerstand mit Einheit dargestellt. Diesen Daten ist eine zweistellige Kennung zur Unterscheidung der Werte vorangestellt. Der Buchstabe "A" zeigt an, dass die Werte zur Speichernummer 0 gehören, d.h. dass es sich dabei um aktuelle Werte handelt. Ein "B" erscheint bei Stichtagswerten (Speichernummer 1). Bei Antworttelegrammen mit gesetzten Statusbits für temporären oder permanenten Fehler wird ein "E" angezeigt. Dem Kennbuchstaben folgt eine Ziffer zur Kennzeichnung der Untereinheit des Gerätes (0 = Hauptgerät).

Datenfilterung

Die Fernanzeige soll ein einfaches Ablesen der Abrechnungsdaten ermöglichen. Aus der sehr grossen Datenfülle, die einige Zähler liefern, werden daher nur die wichtigsten Daten herausgefiltert. So wird jeweils nur das erste Antworttelegramm nach einer Initialisierung mit SND_NKE ausgewertet. Es werden nur die Tarife 0 bis 3, die Geräteeinheiten 0 bis 7, die Speichernummern 0 und 1 und die Funktion "Instantaneous" ausgewählt (Unterscheidung und Darstellung der Werte s.o. "Anzeige der Daten").

Die Anzeige von Daten ist begrenzt auf Energien, Volumina, Temperaturen (Vorlauf / Rücklauf / Differrenz), Durchflüsse und Leistungen. Eine Beschränkung auf Abrechnungsdaten wird dadurch erreicht, dass nur Datensätze mit den VIFs \$00 bis \$1F, \$28 bis \$2F, \$38 bis \$3F, \$58 bis \$63 und \$6E übernommen werden. Dies entspricht Zehnerpotenzen der Einheiten: Wh, J, I, kg, W, I/h, °C, HCA. Ferner werden Datumsangaben aus ausgegebenen Zeitpunkten erzeugt. Zudem ist noch zu beachten, dass je Zähler nur maximal 30 Datensätze angezeigt werden.

Fehlercodes

Code	Fehler
\$00	Kein Fehler
\$01	RAM-Fehler (Gerät zur Reparatur einschicken)
\$11	Problem bei EEPROM Schreiben
\$18, \$19, \$1C	Problem bei EEPROM Lesen
\$20	Problem bei der Kommunikation mit der Echtzeituhr
\$30, \$31, \$32, \$33	Problem mit dem FLASH Datenspeicher
\$51,\$52	Problem mit den Daten in der Echtzeituhr
\$61,\$62	Problem mit dem Ymodem Senden, XModem Empfang

Die folgende Tabelle zeigt die Bedeutung der Fehlercodes. Siehe: "Fehlerbehebung – Status: Fehler".

Menüstruktur

Erläuterung der wichtigsten Menüpunkte

Netzauslesung

Bei der Netzauslesung werden alle Zähler anhand der Zählerliste mit der dort eingetragenen Baudrate und Primäradresse oder ID (bei Padr = 0) ausgelesen.

Einzelauslesung

Auch die Einzelauslesung wird auf Basis der Zählerliste durchgeführt. Dabei ist jeder Zähler durch Listenposition, Primäradresse und ID bezeichnet. Der Zähler wird mittels der Pfeiltasten aus der Liste gewählt, und die Auslesung durch die E-Taste gestartet.

Automatisches Erstellen der Zählerliste

Durch die E-Taste wird im Menü Zählerliste/Automatik der Vorgang zur Erzeugung der Zählerliste ausgelöst. Mittels der C-Taste können einzelne Suchvorgänge verkürzt werden. Insbesondere bei Verwendung von 300 Baud kann dieser Suchvorgang recht lange dauern. Im Menü Anzeigen Konfig / Maximale BaudR (Minimale BaudR) sollten daher vorher die wirklich verwendeten Baudraten eingetragen werden. Nach Abschluss der Zählersuche wird gemeldet, wieviele Zähler gefunden wurden. Über das Menü "Zählerliste / Liste anzeigen" sollten die Eintragungen der Zählerliste überprüft werden.

Bearbeiten der Zählerliste

Einträge der Zählerliste können im Menü "Zählerliste / Liste anzeigen" geändert werden. Dazu ist der gewünschte Zähler auszuwählen und via E-Taste der Editiermodus zu aktivieren. Durch die ↓ Taste können Werte geändert, durch die → Taste andere Stellen angesprungen werden. Der Abschluss der Eingabe erfolgt mit der E-Taste. Die C-Taste bricht die Eingabe ab. Es ist zu beachten, dass hier nur die Listeneinträge und nicht Zählereinstellungen geändert werden. Diese Editierfunktion kann bei Austausch eines Zählers sinnvoll sein. Über das Menü "Zählerliste \ Zähler ergänzen" können zusätzliche Zähler eingetragen werden. Werden einzelne Zähler aus dem Netz entfernt, so können sie via "Zählerliste \ Zähler löschen" aus der Liste entfernt werden.

Einstellung der Baudraten

Im Auslieferungszustand verwendet die Fernanzeige bei der Suche nach Zählern die Baudraten 2400 Baud und 300 Baud. Um die Suche zu beschleunigen, kann dieser Bereich durch Angabe der höchsten und der niedrigsten Baudrate eingeschränkt werden. Dazu sind in den Menüs Anzeigen Konfig / Maximale BaudR und Anzeigen Konfig / Minimale BaudR die entsprechenden Grenzwerte einzustellen.

Unterstützte Protokoll- und Datenformate

Die Fernanzeige unterscheidet nicht spezielle Zählertypen, sondern arbeitet ganz allgemein auf Basis der Protokollempfehlungen der M-Bus Usergroup und der Norm EN1434-3. Sie unterstützt die Variable-Datenstruktur (Mode1) sowie die Feste-Datenstruktur (Mode1 oder Mode2). Die Zahlendarstellung darf als Integerzahl (8Bit, 16Bit, 24Bit, 32Bit, 48Bit, 64Bit), als Realzahl (32 Bit) oder als BCD-Zahl (2digit, 4digit, 6digit, 12digit, 12digit, 16digit) erfolgen.

Fernsteuerung durch Kommandos

Funktion

AMBUS[®] Port 20 verhaltet sich im Grundzustand wie ein einfacher Pegelwandler. Die Signale der Schnittstelle RS-232 werden in Bussignale umgewandelt und umgekehrt. Die CPU überwacht aber den Datenstrom und kann auf bestimmte Zeichenfolgen reagieren. Nach erfolgreichem Login schaltet sich die CPU in den Kommandomodus und kann über die serielle Schnittstelle (z. B. über Modem) ferngesteuert werden. Damit ist es nicht nur möglich einzelne Zähler auszulesen, sondern es können auch beliebige M-Bus-Kommandos gesendet, Konfigurationsdaten geändert und sogar ein Softwareupdate durchgeführt werden. Das beim Hersteller erhältliche Dokument "W60CMxxD.PDF" (xx = Version) beschreibt alle Kommandos und Datenstrukturen für die Entwicklung von eigenen Programmen zur Bedienung der Geräte. Im Folgenden wird erklärt, wie die Geräte mit der Software FService konfigurieren oder ferngesteuert werden können.

Modembetrieb

Für Anwendungen mit Modem-Betrieb wenden Sie sich bitte an Ihren Verkaufsberater.

Funktionen des M-Bus Datenloggers

Funktion

Der Datenlogger kann zeitgesteuert den Bus auslesen und die Daten speichern. Bei der Zeitsteuerung gibt es zwei verschiedene Modi. Die Auslesung kann in festen Zeitabständen von 1 Minute bis zu 1 Woche durchgeführt werden, oder sie wird zu bestimmten Zeitpunkten (z.B. zum Monatsende) gestartet. Der Datenlogger arbeitet auf Basis der internen Zählerliste. Je Zähler wird nur das erste Antworttelegramm verwendet. Dieses wird ungefiltert zusammen mit einem Zeitstempel gespeichert.

Einstellung der Auslesezeitpunkte

Die Auslesezeitpunkte können über Tastatur und Display oder rechnergesteuert über die RS-232-Schnittstelle bzw. über Modem eingestellt werden. Folgende Einstellungen sind per Tastatur möglich: Jede Minute, alle 2 Minuten, alle 3 Minuten, alle 5 Minuten, alle 10 Minuten, alle 15 Minuten, alle 20 Minuten, alle 30 Minuten, jede Stunde, alle 2 Stunden, alle 3 Stunden, alle 4 Stunden, alle 6 Stunden, alle 12 Stunden, 1x pro Tag, 1x pro Woche, 2x pro Woche, 1x pro Monat, 4x pro Jahr, 2x pro Jahr, 1x pro Jahr und 0x pro Jahr (keine Auslesung).

Berechnung der Speicherkapazität

Der Datenspeicher umfasst 1MByte, kann aber auf Wunsch auch 2 oder 4MByte betragen. Im ungünstigsten Fall könnte ein Telegramm 261 Bytes lang sein. Wahrscheinlicher sind aber sehr viel kürzere Telegramme. Ein üblicher Wärmezähler antwortet z.B. mit 79 Bytes. Pulsadapter und Wasserzähler haben sogar noch deutlich kürzere Antworttelegramme. Für eine Kennung und einen Zeitstempel kommen je Zähler noch 12 Bytes und je Auslesezeitpunkt noch zwei weitere Bytes hinzu. Bei 20 Wärmezählern ergibt sich daraus je Auslesung ein Datenvolumen von 1820 Bytes. Der Speicher ist als Ringspeicher aufgebaut, wobei u.U. nur 15 Blöcke a 65536 Bytes effektiv nutzbar sind. In unseren Beispiel sind somit 540 Auslesezeitpunkte speicherbar. In der Praxis werden die mittleren Telegrammlängen kürzer sein, und das Netz meist weniger als 20 Zähler umfassen, so dass deutlich mehr Auslesungen gespeichert werden können.

Abholung der Daten

Der Datenspeicher kann über ein Steuerkommando via Modem oder PC ausgelesen werden. Anwender können dazu die Software FService verwenden. Für Programmierer ist eine genauere Beschreibung verfügbar. Über den Menüpunkt "Logger-Daten" ist ein Teil der gesammelten Daten auch über Tastatur und Display zugänglich. Hierbei werden die Daten wie bei der Fernanzeige gefiltert. Zunächst erscheint eine Liste mit bis zu 25 Auslesezeitpunkten. Durch die E-Taste kann ein Zeitpunkt ausgewählt werden, worauf wie bei der Netzauslesung alle entsprechenden Datensätze angezeigt werden.

PC Software FService

Die Geräte können auch völlig ohne Software über die Tastatur oder mit einer beliebigen M-Bus-Software als Pegelwandler betrieben werden. FService bietet zusätzlich die Möglichkeit der bequemen Konfiguration der Geräte, und es ermöglicht die Fernsteuerung über eine Modem-Verbindung. Die vom Datenlogger gesammelten Daten können abgeholt und in ein Tabellenformat konvertiert werden. Die Software FService ist in einer getrennten Anleitung, welche mit Fservice geliefert wird, beschrieben.

Massbild

Description

L'appareil peut être utilisés comme convertisseur de niveaux transparent ou comme terminal d'affichage à distance via un clavier ou une commande à distance. L'enregistreur de données offre la possibilité de lire le réseau Bus en fonction du temps et de rassembler les données dans la mémoire interne.Les appareils sont fournis avec une mémoire de 1 Mo. Les modèles avec mémoire de 2 ou 4 Mo sont disponibles sur demande.

Le M-Bus est un système de bus de terrain bifilaire peu coûteux destiné à la lecture et à l'alimentation à distance des données de consommation (chaleur, gaz, eau, électricité, etc.). La couche physique et les éléments fondamentaux de protocole sont conformes à la norme européenne EN-1434.

Installation et mise en service

Schéma de raccordement

C: Clear Interruption de la saisie et fermeture d'un menu

RS232 PC: RS232 MODEM:		Interface PC pour maintenance et fonctionnement du convertisseur de niveaux. Interface modem pour maintenance et fonctionnement du convertisseur de niveaux.			
M-Bus:	M+, M-	Raccordement M-Bus (3 paires de bornes) Les terminaux M-Bus sont connectés en parallèle. La larité est indifférente.			
		Les indices + et – servent à différencier les lignes Bus.			
	+ +	Mise à la terre pour symétrisation du M-Bus.			
Power:	V+ -	Tension d'alimentation raccordement positif avec CC (1028 VCC)			
	V-	V- Tension d'alimentation raccordement négatif avec CC			
		 Polarité indifférente avec CA, 1327 VCA 			
		Attention: Ne pas raccorder au secteur! Ceci détruirait l'appareil!			
Affichages DEL:		La DEL verte s'allume Le microcontrôleur est prêt à fonctionner			

Interfaces RS-232

Le M-Bus peut être commandé via une interface RS-232. Le PC se raccorde sur la prise DB9 de droite, tandis que le modem se branche sur le connecteur de gauche DB9. Une seule de ces possibilités de raccordement doit être utilisée à la fois. Vous pouvez utiliser un câble 1:1 pour le raccordement au PC ou le câble livré avec le modem pour le raccordement à ce dernier. Voir: «Configuration du modem» en annexe.

Affectation des raccordements DB9

Broche	Prise	Connecteur	Affectation prise	Affectation connecteur
2	RXD	TXD	Envoi vers PC	Réception du modem
3	TXD	RXD	Réception du PC	Envoi vers modem
4	-	DTR	Inutilisée	Toujours actif
5	GND	GND	Potentiel de référence	Potentiel de référence
7	RTS	CTS	Inutilisée	Toujours actif
8	CTS	RTS	Toujours active	Inutilisé

Plusieurs interfaces simultanément:

Lors de la lecture via le clavier du terminal d'affichage à distance ou en cas de lecture automatique, l'interface RS-232 est séparée du Bus. Ceci peut entraîner des dysfonctionnements provisoires. De plus, pendant la commande via le clavier ou l'interface en série, aucune lecture du compteur n'est effectuée par l'enregistreur de données.

Consignes d'installation

- Notez les numéros d'identification des compteurs des différents immeubles / appartements
- Le cas échéant, configurez le compteur ou le collecteur d'impulsions
- Montez et configurez le terminal d'affichage à distance / l'enregistreur de données (via le clavier ou au moyen du logiciel de configuration Fservice via un ordinateur portable ou un modem)
- Ouvrez une session avec le mot de passe B (par défaut 00001767)
- Sous «Configuration de l'affichage», paramétrez la vitesse de transmission en bauds, le mode recherche, etc.
- Lancez la recherche de compteurs via la liste de compteurs/recherche automatique
- Vérifiez que la liste de compteurs est complète, le cas échéant ajoutez les compteurs manquants.
- Modifiez le mot de passe (au moins le mot de passe B)

Suppression des défaillances

- La DEL verte ne s'allume pas: Vérifiez la tension d'alimentation.
- L'afficheur indique «État: court-circuit»:

Recherchez tout court-circuit ou tout circuit de mise à la masse sur le câblage M-Bus. Des compteurs défectueux peuvent également être à l'origine de surintensités de courant. Localisez la panne en débranchant les différents segments Bus. Compteurs ou extrémité de câbles défectueux

- Recherche de compteurs: Pas de compteur trouvé: Recommencez la recherche, vérifiez la vitesse de transmission en bauds et les adresses. Enregistrez manuellement le compteur et vérifiez la communication via la lecture individuelle.
- Aucune réponse du compteur:

Vérifiez les vitesses de transmission en bauds et l'adresse. Vérifiez l'étendue du réseau: La tension Bus au compteur doit être de 24 V, débrancher les autres segments Bus.

• «État: Erreur»

En mode normal, appuyez simultanément sur les deux touches extérieures pour afficher la liste d'erreurs. Notez les codes d'erreur, puis effacez la liste d'erreurs en appuyant sur la touche Æ. Les principaux codes d'erreur sont expliqués en annexe.

- Mot de passe incorrect
- Si vous avez oublié votre mot de passe, veuillez procéder comme suit:

Rendez-vous d'abord à l'option «État: Erreur» (voir ci-dessus), puis appuyez à nouveau sur la touche _. Notez le texte de 16 caractères affiché sur l'écran à cristaux liquides, puis envoyez-le par e-mail avec le numéro de version micrologicielle et le numéro de série à info@aquametro.com. Un nouveau mot de passe vous sera envoyé dans les plus brefs délais.

Description du convertisseur de niveaux

Fonctionnement:

Normalement, les interfaces RS-232C sont commutées sur le M-Bus, sauf lorsque

- le clavier est utilisé ou
- l'enregistreur de données effectue un relevé automatique.

Les appareils de commande externes (ordinateur portable, ...) peuvent ainsi avoir accès au M-Bus via ces interfaces pendant la période d'inactivité. Pour ce faire, les appareils de commande doivent contenir un logiciel capable de traiter les protocoles des compteurs raccordés. L'appareil AMBUS® Log 20 peut alimenter jusqu'à 20 compteurs standard.

Caractéristiques techniques

Alimentation:	Tension:	1128 VCC, 5 W 1328 VCC, 9 W
Environnement:	Température de fonctionnement: Température de stockage: Humidité:	0 +45 °C -10 +60 °C 1070 % (pas de condensation)
Boîtier:	Dimensions: Type de protection: Matériau / couleur:	L x I x P = 105 x 94 x 58 (mm) IP 20 Noryl / gris clair (similaire RAL 7035)
Poids:	0,23 kg	

Caractéristiques M-Bus

Paramètres	min.	type	max.	unité
Nombre max. de charges standard (compteurs): MR005FA/DL	3			
Nombre max. de charges standard (compteurs): MR006FA/DL	20			
Résistance interne du maître			100	Ω
Tension Bus Mark (à 0 mA)	29,0	30,5	32,0	V
Diminution de la tension Bus en cas de Space	12	12,5	13	V
Coupure surintensité de courant	50	60	70	mA
Seuil bit esclave => maître		7		mA

1 charge standard = 1,5 mA

Planification de réseaux M-Bus

Lors de la planification de réseaux M-Bus, il convient de tenir compte de deux effets. D'une part, les signaux ne peuvent être distordus trop fortement en raison de la capacité du réseau. Celle-ci est principalement déterminée par l'étendue du réseau, c'est-à-dire par la somme de toutes les longueurs de câbles raccordées. Si le taux de transmission (bauds) est plus faible, il est possible de faire fonctionner des réseaux plus étendus. D'autre part, il convient de garantir que même les compteurs les plus éloignés sont alimentés en 24 V. La chute de tension sur la ligne Bus résulte du courant d'envoi de 20 mA, des courants d'alimentation des terminaux de l'embranchement considéré, de la résistance interne du maître M-Bus, de la résistance du câble Bus et des résistances de transition. Plus le nombre d'esclaves raccordés à un embranchement est faible et plus la section des câbles est grande, plus l'éloignement du terminal par rapport au maître peut être important.

La résistance de ligne maximale autorisée de l'afficheur M-Bus peut être estimée grâce aux équations suivantes:

Les valeurs suivantes sont prévues pour un câble téléphonique JYSTY nx2x0.8 (75 Ω/km, 150 nF/km):

Taux de transmission (bauds)	9600 bauds	2400 bauds	300 bauds
Étendue max. du réseau (à 150 nF/km):	1 km	4 km	12 km

Nombre de charges standard (compteurs)	Éloignement max. avec le compteur (à 75 Ω /km)	
du branchement de réseau	Avec équipartition	Tous les compteurs à l'extrémité
3	4,0 km	4,0 km
20	2,5 km	1,5 km

L'utilisation de repeaters (amplificateurs M-Bus) permet aux réseaux M-Bus de couvrir des distances encore plus importantes et de réaliser les extensions souhaitées. Il faut simplement tenir compte du fait que le repeater nécessite également une alimentation secteur.

Blindage

Des études ont démontré que le blindage du câble M-Bus n'est pas nécessaire. En aucun cas, une ligne Bus ne peut entrer en contact avec le blindage ou la terre.

Description du terminal d'affichage à distance M-Bus

Fonctionnement

Le terminal d'affichage à distance M-Bus permet de lire les compteurs et d'afficher leur état sur l'afficheur via le clavier. La personne chargée du relevé a ainsi la possibilité de lire une multitude de compteurs à partir d'un seul et même endroit, sans devoir pénétrer dans l'appartement et sans utiliser un PC. De plus, le mode de commande permet la lecture des compteurs via un modem standard. Ce mode est compatible avec le logiciel Windows Fservice.

Installation

L'accès au menu (voir ci-dessous) est autorisé une fois saisi le mot de passe correct (par défaut: 00001767). La création de la liste de compteurs revêt un caractère important, puisque c'est sur cette base que s'effectuera ensuite la lecture. La recherche automatique de compteurs peut être accélérée considérablement en entrant des restrictions dans le mode de recherche et pour le taux de transmission (par exemple abandon du taux de 300 bauds). Les réglages peuvent être effectués dans le menu «Configuration affichage». Il convient éga-lement de modifier le mot de passe B afin de bloquer l'accès aux réglages et au mot de passe aux personnes non autorisées.

Messages d'erreur

La charge limite et les surintensités de courant sont signalées par les DEL, mais aussi sur l'écran à cristaux liquides. En cas d'erreurs pendant le traitement des données, «Erreur» s'affiche dans la ligne d'état. En mode de base, il suffit d'appuyer simultanément sur les deux touches extérieures pour afficher une «Liste d'erreurs». Un tableau regroupant les codes d'erreur est disponible en annexe. Pour effacer la liste d'erreurs, appuyez sur la touche _. En cas de chute de tension, la liste est également effacée.

Protection du mot de passe

Pour la protection du mot de passe, il convient d'établir une distinction entre 3 modes et 2 mots de passe. En mode standard, le système demande le mot de passe une fois la touche enfoncée. Seul un niveau inférieur est accessible avec le mot de passe A (code du lecteur). Un propriétaire ou un locataire a ainsi accès à la lecture individuelle via la liste de compteurs et la lecture de tout le réseau. Il est donc impossible de modifier la liste de compteurs ou les paramètre du terminal d'affichage à distance. Pour atteindre ce menu, il est nécessaire d'entrer le mot de passe B au lieu du mot de passe A. Lors de la livraison, les mots de passe par défaut sont: A 00000000 et B 00001767. Pour fermer la demande de mot de passe pour le niveau A, il suffit d'appuyer sur la touche E. Étant donné que le mot de passe B permet également de modifier les mots de passe, il est vivement recommandé de le personnaliser. Les paramétrages peuvent être effectués dans les menus Affichage configuration / Mot de passe A ou Affichage configuration / mot de passe B.

Accès via mode ID: Afin de respecter les règles strictes en matière de protection des données, le terminal d'affichage à distance peut être configurée de telle sorte qu'un locataire ne puisse avoir accès aux données d'un autre locataire. Une fois la touche ad hoc enfoncée, un menu spécial «Accès via ID» apparaît. Ce menu implique la saisie d'un code d'identification (ID) pour lire le compteur correspondant. Une fois le code ID 0000000 entré, le système demande le mot de passe par lequel l'administrateur système peut accéder aux menus, conformément à la description ci-dessus.

Accès via mode Adr: Ce mode permet la lecture directe de compteurs via l'adresse primaire. Toutefois, il ne contient aucune protection d'accès. La procédure à suivre est similaire à celle décrite ci-dessus. Étant donné que l'adresse 254 est définie par défaut, il est possible d'effectuer la lecture en appuyant sur la touche E, lorsqu'un seul compteur est raccordé. En appuyant trois fois sur la touche \rightarrow , et donc en déplaçant le curseur de trois positions, vous quitterez le mode d'entrée d'une adresse et activerez la demande de mot de passe pour l'accès aux menus.

Commande clavier

En plus des commandes PC, les quatre touches et l'écran lumineux permettent également une utilisation conviviale de l'appareil. Le touches disposent d'un point de poussée nettement perceptible, tandis que les pressions sur les touches sont accompagnées d'un signal sonore. La sélection d'une option de menu et la saisie de séries de chiffres sont décrites ci-dessous. Si aucune touche n'est enfoncée pendant quelques minutes, l'appareil repasse automatiquement au repos.

Sélection d'une option de menu: Les touches fléchées permettent de déplacer la flèche de sélection vers l'option de menu souhaitée. Il suffit ensuite d'appuyer sur la touche E [bleu] pour activer l'option de menu sélectionnée. La touche C [rouge] permet d'annuler la saisie et de quitter le menu.

Après l'introduction du mot de passe et fermeture de la saisie avec la touche E, le menu principal s'affiche. Celui-ci indique d'abord les options «Lect. complète» et «Lecture unique». L'activation de la touche \downarrow permet d'afficher une nouvelle partie du menu principal et de sélectionner «Lecture individuelle». Il suffit alors d'appuyer sur la touche E pour activer le sous-menu sélectionné.

Saisie d'une série de chiffres

La touche \downarrow permet de sélectionner les chiffres. À chaque fois que cette touche est enfoncée, le chiffre diminue d'une unité. Une fois le 0 atteint, la série recommence au chiffre 9. La touche \rightarrow permet de sélectionner l'emplacement suivant. La sélection des emplacements fonctionne également en boucle, c'est-à-dire qu'une fois le dernier emplacement atteint, le curseur revient au premier. Quelle que soit la position du curseur, le mode saisie peut être quitté via la touche E. La touche C permet d'annuler la saisie.

Affichage des données

Afin que l'afficheur reste lisible, seuls les enregistrements sélectionnés sont affichés (voir filtrage des données). Il convient d'opérer une sélection entre l'affichage des données actuelles et des valeurs du jour de référence, entre les différents tarifs et sous-unités de l'appareil (par exemple sur les compteurs de chaleur avec collecteur(s) d'impulsions intégré).

Afin que les données puissent être affectées à un compteur, l'adresse primaire et l'ID (identification) apparaissent toujours à la ligne 1. La première ligne est également utilisée pour la restitution des tarifs. Le numéro de tarif est précédé de la lettre «T».

No. de tarif Adresse primaire ID du compteur

A: valeur actuelle (mémoire no. 0) B: valeurs du jour de référence (mémoire no. 1) E: drapeau d'erreur activé Chiffre: no. de la sous-unité

La deuxième ligne indique le jour de référence ou l'indexe du compteur avec l'unité. Ces données sont précédées d'un code d'identification de deux caractères visant à différencier les valeurs. La lettre «A» indique que les valeurs appartiennent au numéro de mémoire 0, c'est-àdire qu'il s'agit des valeurs actuelles. La lettre «B» apparaît pour signifier les valeurs des jours de référence (numéro de mémoire 1). La lettre «E» s'affiche pour les télégrammes de réponse avec bits d'état activés pour les erreurs temporaires ou permanentes. La lettre est suivie d'un chiffre permettant d'identifier la sous-unité de l'appareil (0 = appareil principal).

Filtrage des données

Le terminal d'affichage à distance doit permettre une lecture facile des données. Sur la très grande quantité de données fournies par quelques compteurs, seules les principales sont encore présentes après le filtrage. Ainsi, seul le premier télégramme de réponse est évalué après une réinitialisation avec SND_NKE. Seuls les tarifs 0 à 3, les unités 0 à 7, les numéros de mémoire 0 et 1 et la fonction «Instantané» sont sélectionnées (différenciation et représentation des valeurs, voir ci-dessous «Affichage des données»).

L'affichage des données est limité aux énergies, aux volumes, aux températures (aller / retour / différence), aux débits et aux puissances. Pour la limitation aux données de facturation, seuls les enregistrements avec les VIF \$00 à \$1F, \$28 à \$2F, \$38 à \$3F, \$58 à \$63 et \$6E sont pris en compte. Ceci correspond à des puissances de dix des unités: Wh, J, I, kg, W, I/h, °C, HCA. En outre, des indications de date sont générées à partir des moments donnés. De plus, il faut noter que 30 enregistrements max. peuvent être affichés pour chaque compteur.

Codes d'erreur

Code	Erreur
\$00\$00	Aucune erreur
\$01	Erreur RAM (envoyer l'appareil en réparation)
\$11	Problème d'écriture EEPROM
\$18, \$19, \$1C	Problème de lecture EEPROM
\$20	Problème de communication avec l'horloge en temps réel
\$30, \$31, \$32, \$33	Problème avec l'enregistreur de données FLASH
\$51,\$52	Problème avec les données de l'horloge en temps réel
\$61, \$62	Problème avec le modem Y Envoi, avec le modem X Réception

Le tableau suivant indique la signification des codes d'erreur. Voir: «Suppression des défaillances – État: Erreur»

Structure du menu

Explication des points principaux du menu

Lecture réseau

Pour la lecture réseau, tous les compteurs de la liste sont lus avec les vitesses et les adresses primaires ou ID (sur Padr = 0) qui y figurent.

Lecture individuelle

La lecture individuelle est également effectuée sur la base de la liste des compteurs. Chaque compteur est caractérisé par sa position dans la liste, son adresse primaire et son ID. Sélectionnez le compteur dans la liste au moyen des touches fléchées et lancez la lecture avec la touche E.

Création automatique de la liste de compteurs

Dans le menu Liste de compteurs/Automatique, il suffit d'appuyer sur la touche E pour lancer la création de la liste de compteurs. La touche C permet de raccourcir les différents processus de recherche. Ceux-ci peuvent durer particulièrement longtemps, en particulier pour un taux de 300 bauds. C'est pourquoi il convient de fixer au préalable les taux de transmissions réellement utilisés dans le menu Affichage configuration / Taux de transm. Max (taux de transmission min.). Une fois la recherche de compteurs terminée, le système indique le nombre de compteurs trouvés. Le menu «Liste de compteurs / Afficher la liste» permet de vérifier les entrées de la liste de compteurs.

Traitement de la liste de compteurs

Les entrées de la liste de compteurs peuvent être modifiées dans le menu «Liste de compteurs / Afficher la liste». Pour ce faire, sélectionnez le compteur souhaité, puis activez le mode édition via la touche E. La touche J permet de modifier les valeurs, tandis que la touche – permet de passer à l'emplacement suivant. Pour clôturer la saisie, il suffit d'appuyer sur la touche E. La touche C annule la saisie. Notez que ce menu permet uniquement de modifier les entrées dans la liste et non les paramètres des compteurs. Cette fonction d'édition peut s'avérer utile en cas de remplacement d'un compteur. Le menu «Liste de compteurs / Ajouter des compteurs» permet d'entrer des compteurs supplémentaires. Si des compteurs sont supprimés du réseau, ils peuvent être effacés de la liste via le menu «Liste de compteurs / Effacer un compteur».

Réglage des vitesses de transmission

Dans son état d'origine, le terminal d'affichage à distance utilise des vitesses de 2400 et 300 bauds pour la recherche de compteurs. Afin d'accélérer la recherche, ce domaine peut être limité en entrant le taux le plus faible et le plus élevé. Pour ce faire, il suffit de régler les valeurs limites correspondantes dans les menus Affichage config. / Taux de transm. Max et Affichage config. / Taux de transm. Min.

Formats de protocoles et de données supportés

Le terminal d'affichage à distance ne distingue pas les types spéciaux de compteurs, mais travaille de manière générale sur la base des recommandations de protocoles du groupe d'utilisateurs Bus et de la norme EN1434-3. Elle est compatible avec la structure de données variable (mode 1) et la structure de données fixe (mode 1 ou mode 2). La représentation du compteur peut prendre la forme d'un nombre entier (8Bit, 16Bit, 24Bit, 32Bit, 48Bit, 64Bit), d'un nombre réel (32 Bit) ou d'un nombre DCB (2digit, 4digit, 6digit, 8digit, 12digit, 16digit).

Utilisation à distance via les commandes

Fonctionnement

Dans son état de base, l'AMBUS® Port 20 se comporte comme un convertisseur de niveaux simple. Les signaux de l'interface RS-232 sont convertis en signaux Bus et inversement. L'unité centrale (CPU) surveille le flux de données et peux réagir à des suites de caractères bien définies. Une fois l'identification réussie, la CPU passe en mode commande et peut être commandée à distance via l'interface série (par exemple via un modem). Il est ainsi non seulement possible de lire les différents compteurs, mais aussi d'envoyer les commandes M-Bus souhaitées, de modifier les données de configuration et même de réaliser une mise à jour logicielle. Le document «W60CMxxD.PDF» (xx = version) décrit toutes les commandes et structures de données pour le développement de programmes propres pour l'utilisation des appareils. Le point ci-après décrit comment les appareils peuvent être configurés ou commandés à distance via le logiciel Fservice.

Fonctionnement avec modem

Pour les applications avec utilisation d'un modem, veuillez vous adresser à votre conseiller de vente.

Fonctions de l'enregistreur de données M-Bus

Fonctionnement

L'enregistreur de données peut lire le Bus et enregistrer les données selon un horaire défini. Cette commande temps peut être déterminée par deux modes. La lecture peut être effectuée à intervalles réguliers allant de 1 minute à 1 semaine, ou elle peut être lancée à des moments précis (par exemple fin du mois). L'enregistreur de données travaille sur la base de la liste de compteurs internes. Seul le premier télégramme de réponse est envoyé pour chaque compteur. Celui-ci est enregistré sans être filtré et accompagné d'un time stamp.

Réglage des intervalles de lecture

Les heures de lecture peuvent être réglées via le clavier et l'écran ou commandées par le calculateur via l'interface RS-232 ou un modem. Le clavier permet les paramétrages suivants: chaque minute, toutes les 2 minutes, toutes les 3 minutes, toutes les 5 minutes, toutes les 10 minutes, toutes les 15 minutes, toutes les 20 minutes, toutes les 30 minutes, toutes les 4 heures, toutes les 6 heures, toutes les 12 heures, 1x par jour, 1x par semaine, 2x par semaine, 1x par mois, 4x par an, 2x par an, 1x par an et 0x par an (aucune lecture).

Calcul de la capacité mémoire

L'enregistreur de données a une capacité de 1 Mo. Toutefois, elle peut passer à 2 ou 4 Mo sur demande. Au pire, un télégramme peut atteindre 261 octets. Toutefois, les télégrammes sont généralement beaucoup plus courts. Un compteur de chaleur classique envoie par exemple une réponse de 79 octets. Les collecteurs d'impulsions et les compteurs d'eau possèdent des télégrammes de réponse bien plus courts encore. L'identification et le time stamp ajoutent 12 octets par compteur et chaque point de lecture encore 2 de plus. Pour 20 compteurs, chaque lecture entraîne un volume de données de 1820 octets. La mémoire est une mémoire circulaire, et, dans certaines circonstances, seulement 15 blocs de 65536 octets sont réellement utilisables. Dans cet exemple, 540 points de lecture peuvent être enregistrés. En pratique, les télégrammes de longueur moyenne seront plus courts et le réseau comptera généralement moins de 20 compteurs, ce qui permettra d'enregistrer un nombre bien plus important de lectures.

Relevé des données

L'enregistreur de données peut être lu sur un modem ou un PC via une commande. Pour ce faire, les utilisateurs peuvent utiliser le logiciel FService. Les programmeurs doivent disposer d'une description détaillée.

L'option de menu «Données de l'enregistreur» ouvre également l'accès à une partie des données collectées via le clavier et l'écran. Les données sont filtrées comme sur le terminal d'affichage à distance. Une liste pouvant contenir jusqu'à 25 points de lecture apparaît d'abord. La touche E permet de sélectionner un moment où tous les enregistrements correspondants seront affichés, comme pour la lecture réseau.

Logiciel PC FService

Les appareils peuvent également être utilisés comme convertisseurs de niveaux via le clavier sans aucun logiciel ou avec le logiciel M-Bus souhaité. Fservice offre en outre la possibilité de configurer aisément les appareils et de commander les appareils à distance via une liaison par modem. Les données collectées par l'enregistreur de données peuvent être relevées et converties en tableau.

Le logiciel Fservice est accompagné de son propre manuel d'utilisation.

Dimensions

