

Design of a Universal SARS-CoV-2 Vaccine Effective Against Evolving Variants

Mark J. Newman, PhD

Overview

- Immune responses to SARS-CoV-2
- Conserved regions of coronaviruses
- GeoVax MVA-VLP technology
- MVA-VLP-COVID
- Designing a vaccine with broad protection

Immune Responses to Viral Infections

- Humoral immune response: antibodies specific for the virus capture and neutralize virus, blocking infection and limiting cell-to-cell spread
- Cellular immune response: cytotoxic (CD8) and helper (CD4) T-cells limit viral replication and clear infection by killing virus-infected cells
- Multifunction responses with memory: required for optimal protection from infection and serious illness

SARS-CoV-2 Antibody Responses

- Neutralizing antibodies, specific to the Spike (S) protein present in most sera of convalescent patients *Emerging Infectious Diseases* 2021: 27(issue 2)
- Neutralizing antibodies persist for months, long-term data is absent Science 2020: 370 (issue 6521)
- SARS-CoV-2 infection induces bone marrow resident plasma cells in humans Nature 2021: 595 (421–425)
- Memory B cell numbers readily detected 1-8 months after infection Science 2021: 371 (issue 6529)

SARS-CoV-2 Antibody Responses

- The duration of neutralizing antibodies may be short-lived Nature Micro 2020: 5 (1598-1607)
- Non-protective antibodies may rarely be associated with antibody-mediated enhancement of disease *Immunity* 2020: 53 (248-263)
- Stabilized S protein is the antigenic target central to most of the 1st generation vaccines, focus on virus neutralization (Pfizer, Moderna, J&J, AZ, NovaVax)

SARS-CoV-2 Vaccine Challenge is Emerging Variants

 SARS-CoV-2 rapidly mutates and can "evolve" to generate variants that are more transmissible and/or resistant to antibodymediated neutralization

Nextstrain via Bedford.io

Reduction of Vaccine-Induced Antibody Activity

Variants of WHO Concern

Variant Designation	Initial Source	S-Protein Mutations	Pathogenesis	Antibody Resistance
α - Alpha (B1.1.7)	UK - Sept 2020	3, 个 ACE binding	50% 个 infection	±
β - Beta (B.1.351)	RSA – May 2020	8,↑ ACE binding Related to α	50% 个 infection	个, vaccines & monoclonals
γ - Gamma (P.1)	Brazil - Nov 2020	8,↑ ACE binding Related to α and β	50% 个 infection 个 VL	个, vaccines & monoclonals
δ - Delta (B.1.617.2)	India – Oct 2020	8,个 ACE binding	60% 个 infection Most transmissible	个 30-40%, vaccines
ε - Eta (B.1.525)	Nigeria - Dec 2020	7,↑ ACE binding Related to α	50% 个 infection	个 30%, vaccines & monoclonals
ι - Iota (B.1.526)	USA - Nov 2020	3, 个 ACE binding	±	±
к - Карра (В.1.617.1)	India - Oct 2020	8,个 ACE binding	±	↑ 30%, vaccines
λ - Lambda (C.37)	Peru – Aug 2020	7,个 ACE binding	±	个 30%, vaccines

SARS-CoV-2 Cellular Immunity

- >90% of convalescent patients had detectable CD4+ T-cell responses Science 2021:371(issue 6529)
- Multi-specificity and functionality of T-cells are associated with accelerated viral clearance and with protection from severe COVID-19 Oxford Open Immunol 2021:2 (issue 1)
- Patients who recovered from SARS-CoV-1 infection possess long-lasting memory T-cells 17 years after the outbreak of SARS in 2003 Nature 2020:584 (457–462)

SARS-CoV-2 Cellular Immunity

- T-cells in uninfected donors recognized epitopes in NSP7 and NSP13, suggesting cross-reactive recognition seasonal viruses and CoV-2 Nature 2020: 584 (457–462)
- NSP7 T-cell epitopes are conserved among animal betacoronaviruses Nature 2020: 584 (457–462)
- Vaccine induction of T-cells is likely to be required for optimal and long-term efficacy against emerging SARS-CoV-2 variants

SARS-CoV-2 Disease Severity

Functional T cells and not circulating antibody correlate with reduced disease severity

250

SARS-CoV Conserved Sequences

- Sequences of phylogenetically related SARS-CoV vary in Spike, ORF3 and ORF8 Nature Rev Micro 2019:171(181–192)
- Mutation in the S and ORF8 allowed for efficient spread from bats to civets PLOS Pathogens 2017:13(11)
- MERS-CoV, exhibits high sequence homology among the ORF1a/b genes but mutations in the S gene PLOS Pathogens 2017: 13(11)

Similarity plot based on the full-length SARS-CoV genome sequences

PLOS Pathogens. 13(11). 2017

Conserved SARS-2 T-cell Epitopes in

Exposed

Unexposed

GeoVax MVA-VLP Vaccine Platform

Non-infectious virus-like particles (VLP) generated in vivo

MVA-SARS-CoV-2 (GEO-CM02)

MVA Encoding Stabilized Spike, Membrane and Envelope

Insert Stability

	Spike plaques	MVA plaques	Insert integrity
Seed virus	125	125	100%
Passage 15	399	399	100%
Passage 20	410	412	99.5%

VLP formation

Spike protein expression

Membrane protein expression

GEO-CM02 Efficacy in Hamsters

GEO-CM02 induces high titered antibody responses and protects animals from morbidity

GEO-CM02 Immunogenicity hACE2 Transgenic Mice

GEO-CM02 elicits neutralizing antibody and polyfunctional and memory T cell responses

Data Interpretation

- The use of MVA as a vector supports the design and production of "next-gen" vaccines encoding multiple viral proteins
 - S protein as the antibody target
 - M and E as T-cell targets
- The combination of S, M and E protein expression supports VLP formation, optimal immunogenicity
- Functional antibodies and T-cell responses are induced that mediate protection from infection and pathogenesis

Future Designs

- Express additional viral genes encoding conserved proteins as antigens to increase the breadth of T-cell responses
 - >60% of the viral genome encodes NSP that are sequence conserved and immunogenic in humans
- Build on existing MVA-SME vaccine construct
 - Encode NSP under different promoters
 - Expression not part of the VLP structure

Acknowledgements

GeoVax team

Arban Domi Sreenivasa Oruganti

Mary Hauser Kevin Silva

• NIH SBIR funding 1R43AI157578-01

University Texas MB
 Alex Bukreyev
 Delphine Malherbe

Thank You

Creating Vaccines to Serve Humanity

For More Information

GeoVax Labs, Inc. info@geovax.com 678-384-7220

1900 Lake Park Drive, Suite 380 Atlanta, GA 30080 Tel: (678) 384-7220 Fax: (678) 384-7281 www. geovax.com