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As immuno-oncology drugs grow more popular in the treatment of cancer, better methods are needed to
quantify the tumor immune cell component to determine which patients are most likely to benefit from
treatment. Methods such as flow cytometry can accurately assess the composition of infiltrating im-
mune cells; however, they show limited use in formalin-fixed, paraffin-embedded (FFPE) specimens. This
article describes a novel hybrid-capture RNA sequencing assay, ImmunoPrism, that estimates the
relative percentage abundance of eight immune cell types in FFPE solid tumors. Immune health
expression models were generated using machine learning methods and used to uniquely identify each
immune cell type using the most discriminatively expressed genes. The analytical performance of the
assay was assessed using 101 libraries from 40 FFPE and 32 fresh-frozen samples. With defined samples,
ImmunoPrism had a precision of �2.72%, a total error of 2.75%, and a strong correlation (r2 Z 0.81;
P < 0.001) to flow cytometry. ImmunoPrism had similar performance in dissociated tumor cell samples
(total error of 8.12%) and correlated strongly with immunohistochemistry (CD8: r2 Z 0.83; P < 0.001)
in FFPE samples. Other performance metrics were determined, including limit of detection, reportable
range, and reproducibility. The approach used for analytical validation is shared here so that it may
serve as a helpful framework for other laboratories when validating future complex RNA-based assays.
(J Mol Diagn 2020, 22: 555e570; https://doi.org/10.1016/j.jmoldx.2020.01.009)
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Cancer pathogenesis has traditionally been viewed as a
multistep process through which normal cells progressively
acquire tumorigenic traits, the so-called hallmarks of can-
cer.1,2 Specifically, genetic and epigenetic alterations have
been considered the predominant drivers of cancer patho-
genesis. Increased tumor-infiltrating lymphocytes have been
associated with improved outcomes in a broad range of
human cancers, including melanoma, colorectal cancer, and
triple-negative breast cancer. More recently, the presence of
immune cells in the tumor microenvironment has been
shown to play a role in the progression of cancer and the
response of the patient to therapy.3e7

With this increased understanding of the important inter-
play between cancer development and the immune system,
there have been new therapeutic efforts aimed at modulating
the immune system to improve patient outcomes. Most
salient is the checkpoint inhibitor class of drugs. This class
of drugs works by blocking immune checkpoints, which
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normally act to moderate immune responses by suppressing
immune cell activation. By lifting this suppression, check-
point inhibitors can reverse the blockade of an immune
response against cancer cells, which is often imposed in the
tumor microenvironment. Checkpoint inhibitors, such as
ipilimumab and pembrolizumab, humanized monoclonal
antibodies that block activation of cytotoxic T-lymphocyte-
associated protein 4 and programmed cell death protein 1,
respectively, have revolutionized the treatment of multiple
cancer types, including melanoma, nonesmall-cell lung
tive Pathology. Published by Elsevier Inc.
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cancer, and several other indications.8,9 However, despite
durable responses in some patients, the objective response
rate for these treatments is typically <30%, demonstrating a
clear need to understand their underlying mechanisms and
develop tools to identify patients who are likely to benefit
from them.9,10 For example, studies suggest that checkpoint
inhibitor therapies are less effective when tumors lack infil-
trating lymphocytes in general, and are most effective in
patients with preexisting programmed death-ligand
1einhibited tumor infiltrating T cells.11,12

The early clinical success of checkpoint inhibitors has led
to the development of other immuno-oncology therapy
modalities, including adoptive cell transfer13,14 and cancer
vaccines.15,16 These therapies all share the same intent: to
improve the ability of the immune system to detect cancer
cells, recruit immune cells to the site of tumors, and ulti-
mately promote the cytotoxic functions of these immune
cells to destroy cancer cells. An example of adoptive cell
transfer is the use of chimeric antigen receptor T cell ther-
apy. Representative of chimeric antigen receptor T thera-
pies, one US Food and Drug Administrationeapproved
chimeric antigen receptor T therapy demonstrates high
overall remission rate of 81%; however, 73% of patients
experienced serious adverse events.17 Because of the high
cost of chimeric antigen receptor T cell therapies and the
high risk of serious adverse effects, there is a strong need for
understanding which patients will benefit from treatment
even when overall response rates are high.

Given the central role of immune cells in oncology and
their connection to positive patient outcomes, a clear need is
demonstrated for the quantification of immune cell presence,
especially in solid tumor biopsies.8 The current gold standard
method, immunohistochemistry (IHC), has limited
throughput and exhibits variability.18,19 To try to address
these weaknesses, clinical methods, such as Omniseq,20 and
some research methods, such as the Nanostring PanCancer
IO 360 Gene Panel21 and Cibersort,22 have used RNA
expression to profile the immune response in tumors.
However, these qualitative assays rely on rank ordered gene
lists or single-gene identifiers to generate cell scores that
have not been validated or weakly correlate with immune
cell presence. Furthermore, the qualitative cell presence
generated by methods such as Nanostring is not comparable
within samples. For example, T-cell scores cannot be
compared with B-cell scores in the same sample. As such,
these methods are not able to accurately or precisely quantify
tumor-infiltrating lymphocytes in the tumor microenviron-
ment. Therefore, new quantitative methods and technologies
are required to quantify tumor-infiltrating lymphocytes in the
tumor microenvironment to provide a platform for di-
agnostics and, ultimately, help drive drug development.

To address this need, a new RNA-based approach was
developed to accurately detect the relative amount, or per-
centage, of immune cells in a heterogeneous cell mixture.
The approach uses a database of immune health expression
models (iHEMs), which are composed of the most
556
discriminatively expressed genes that identify each of the
eight immune cell types. These gene expression models
afford several advantages over the single marker or ranked
gene list approaches cited previously. Of note, the use of
iHEMs enables more robust quantification and is less sus-
ceptible to molecular noise. The molecular and informatic
pipelines of this approach have been standardized into the
ImmunoPrism assay (Cofactor Genomics, Inc., San Fran-
cisco, CA). ImmunoPrism quantifies the presence of eight
different immune cell types from as little as 40 ng of RNA
extracted from a formalin-fixed, paraffin-embedded (FFPE)
tumor sample. ImmunoPrism enriches for the small fraction
of gene constituents of the iHEMs to maximize the analyt-
ical performance of immune characterization (see Materials
and Methods). By enriching for and leveraging iHEMs, the
ImmunoPrism assay provides quantitative immune profiling
of tumor samples, with the goal of facilitating drug devel-
opment, clinical studies, and patient care in oncology. This
article describes the validation employed to characterize
ImmunoPrism’s analytical performance in our College of
American Pathologistseaccredited and Clinical Laboratory
Improvement Amendmentsecertified laboratory. Robust
assay performance is demonstrated, and an experimental
framework is provided that others can use to validate
complex RNA-based assays.

Materials and Methods

Performance Metrics and Statistical Analysis

There is little guidance from the College of American Pa-
thologists on how to measure analytical performance in
RNA-based assays, especially those that use machine
learning methods to generate RNA models and provide
percentages as read outs. Herein, how performance was
measured in this new type of assay is explained.
ImmunoPrism estimates the relative abundance of eight

immune cell types (eg, 10% of the cells in a processed FFPE
tumor sample are CD4þ T cells). Central to the analytical
validation in this work are samples generated with known
immune cell ratios. These samples were processed with
ImmunoPrism molecular and analysis pipelines to estimate
the abundance of immune cells. These estimations were
compared with the known values of these samples to un-
derstand the error of ImmunoPrism estimations and derive
performance metrics.
The assay’s error and the subsequent analytical perfor-

mance metrics are described in the same unit as the assay’s
estimations: percentage. As such, these metrics consider the
absolute error in percentage points (of 100), as opposed to a
relative error (depending on the known value). For example,
if CD8 cells are known to be 10% of the cells in a sample
and ImmunoPrism estimates it to be 9%, a 1% absolute error
is measured, not a 10% relative error. This was chosen to
simplify evaluation of errors, estimations, and performance
metrics, especially across a wide reportable range of values.
jmd.amjpathol.org - The Journal of Molecular Diagnostics
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For the figures in this work, absolute error metrics are
presented. However, for select figures, relative error metrics
are also provided.

The ImmunoPrism assay employs an analysis algorithm
that is different than common genetic assays because it does
not estimate a binary classification (eg, the presence or
absence of a particular single-nucleotide polymorphism).
Instead, this assay estimates continuous values. Therefore,
diagnostic metrics, such as precision, recall, sensitivity, and
specificity, are not appropriate to describe the performance
of this assay. Instead, analytical metrics are used, sometimes
of the same name (eg, sensitivity or limit of detection). See
Saah and Hoover23 for a complete discussion comparing
diagnostic and analytic metrics.

In lieu of diagnostic metrics, this study adopted analytical
performance metrics inspired by International Organization
for Standardization 5725:1994 accuracy (trueness and pre-
cision) of measurement methods and resultsdpart 1: general
principles and definitions. In particular, performance was
characterized by trueness, precision, and accuracy. Trueness
is measured as the average error across all samples. This
metric describes the bias of estimates (ie, “is it consistently
too low or too high”?). Precision is measured as the first SD
of error across considered samples. This metric gives a sense
for the distribution of how much samples may deviate from a
known value. Accuracy is defined as the root mean squared
error across all samples. This metric gives a single, high-
level measure of how well the assay estimates cell presence.
In effect, it combines the different ways that trueness and
precision describe error into a single metric. Trueness, pre-
cision, and accuracy describe the assay’s error, and therefore,
these should ideally be 0%. The potentially confusing se-
mantics this may cause are noted (eg, a low accuracy value,
such as 1.2%, indicates highly accurate performance).
Typically, the trueness, precision, and accuracy are calcu-
lated across all cell types and all samples. To provide further
resolution to the performance of the assay, these metrics are
also calculated across all samples per cell type.

In addition to these analytical metrics, more traditional
correlation statistics are also shown when appropriate. These
include the coefficient of determination, denoted as r2, and
the two-tailed null hypothesis significance test, denoted as p.
The r2 value was calculated by squaring the sample Pearson
correlation coefficient r. For reporting, r2 was chosen over r
for its ease of interpretation: it is the proportion of the vari-
ance in the dependent variable that is predictable from the
independent variable. p was calculated via the t-test from r.

Generating iHEMs

ImmunoPrism leverages eight iHEMs. Each iHEM is a
distinguishing pattern of gene expression that characterizes
an immune cell type. For this assay, iHEMs are used that
describe the identity of CD4þ T cells, CD8þ T cells, reg-
ulatory T cells (Tregs), M1 and M2 macrophages, mono-
cytes, natural killer (NK) cells, and B cells. Briefly, these
The Journal of Molecular Diagnostics - jmd.amjpathol.org
iHEMs were generated using machine learning methods to
mine the RNA expression data of purified immune cells
(origin described below) and other databases. This section
describes how the iHEMs are generated and ultimately used
to estimate immune cell percentages in tumor samples.

Processing of RNA Sequencing Data
FASTQ files were preprocessed with trim_galore/cutadapt
version 0.4.1 to remove adapter sequences as well as reads
with PHRED quality scores <20 and reads that were <20
bp. The trimmed reads were aligned to the human genome
GRCh38 with STAR24 version 2.5.2a using the two-pass
method. Read counts were generated using htseq-count25

version 0.9.1 and annotation from Gencode version 22.

The Data-Driven Approach to Defining iHEMs
The genes comprising each iHEM were selected in a data-
driven way, according to the following three criteria: i)
genes must have a low variability for a specific cell type, but
ii) a high variability across cell types, and iii) be uncorre-
lated to normal or diseased tissue. Genes comprising each
iHEM were identified using the following steps:

1. Six donors from CD8, CD4, M1, and M2 pure immune
cell types and seven donors from CD19, Treg, CD56, and
CD14 pure immune cell types (52 total donors) were
sequenced using whole transcriptome RNA sequencing,
and the sequence data were processed using the methods
described above.

2. Immune cell donors were grouped by cell type before
differential expression analysis using DESeq226 version
1.10.1, and log2 fold changes were computed for all
protein coding genes for every pairwise comparison be-
tween immune cell types using DESeq2.

The data for the genes from each pairwise comparison
were used for further filtering, as below:

a. The average counts per million mapped reads was
calculated for each cell type using the following
equation:

CPMZ

P�
Xi
n

�
� 106

N
ð1Þ

where Xi is the number of reads mapped to a feature
(eg, gene, transcript, or exon), n is the total number of
mapped reads for the sample, and N is the total number
of donors in the cell type.

b. Genes exhibiting highly variable expression with a
coefficient of variance >25%, within a cell type, were
filtered from further analysis.

c. Genes displaying expression levels of <15 counts per
million, which could contain undesired sequencing
noise, were filtered from further analysis.
557
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d. From the remaining genes, log2 differential expression
values for each pairwise comparison between cell
types (32 comparisons) were sorted, from high to low,
and the top five genes with the highest log fold change
were selected for inclusion.

3. To reduce the potential for cross talk with nonimmune
cell types, the average gene expression was calculated
across nonhematopoietic cell lines in the Cancer Cell Line
Encyclopedia (968 cell lines) and the Genotype Tissue
Expression (27 tissues; version 7), and genes with average
expression >2 reads per kilobase of transcript per million
mapped reads were removed from further analysis.

Taken together, these intraimmune and interimmune
filtering approaches yielded 125 genes. These genes are
listed in Supplemental Table S1. The function of these
genes, pathways, and their associated tissue expression
were further investigated using Reactome Pathway Anal-
ysis version 3.6 (release 70)27 and Molecular Signatures
Database version 7.028 tools. This information can be
found in Supplemental Figure S1 and Supplemental Tables
S2 and S3. In brief, the Molecular Signatures Database
showed 65 genes in gene families consisting of tumor
suppressors, oncogenes, translocated cancer genes, protein
kinases, cell differentiation markers, homeodomain pro-
teins, transcription factors, cytokines, and growth factors,
with >50% of the genes comprising cell differentiation
markers. Reactome Pathway Analysis showed 52 genes
involved in immune pathways, including adaptive and
innate immune pathways.

Capture probes were designed to enrich total RNA for
the resulting 125 genes, and using this reduced capture,
the same pure cell donor samples were resequenced. For
the chosen 125 genes, the mean count per million values
were calculated, observed with the reduced capture
method, across all donors for each cell type. The mean
values of these 125 genes define each iHEM.
Thus, informatically speaking, each iHEM is a 125-gene
vector.

Estimation of Correction Factors
RNA sequencing indicates the relative expression level of
different genes; however, each cell type has varying levels
of RNA content. To translate transcript quantification into
the relative amount of cell present for immune profiling, a
corrective factor is necessary. In Using iHEMs for Immune
Profiling, corrective factors are used that were derived to
enable immune profiling in terms of cell percentage. Briefly,
pure immune cell types were combined in known quantities
to generate several artificial cell mixtures. RNA from these
mixtures was sequenced, and immune mRNA content was
estimated using the procedure described below. Correction
factors were estimated via Powell nonlinear optimization.
The optimization minimized the total squared error of
known values and corrected values of all cell types and
samples.
558
Using iHEMs for Immune Profiling

The task of immune profiling is to determine the relative
amounts of each cell type in a sample. The expression of
immune cells was characterized via iHEMs. However, a
heterogeneous tissue sample will have a diverse mix of
different immune cell types and nonimmune cells, and
therefore a heterogeneous expression for a set of genes.
Immune profiling thus seeks to solve for the relationship
between the heterogeneous expression that is sequenced and
the iHEMs that define immune cells.
This relationship can be modeled as a linear combination

of the gene expression of each cell type present in the bulk
reduced capture RNA sequencing data:

BZS �F ð2Þ

where B is a vector representing the gene expression of the
125 genes from a heterogeneous sample, S is a 125 by 8
matrix of iHEMs, and F is a vector of length 8 that repre-
sents the estimated mRNA fractions of each immune cell
type present in the heterogeneous sample. For every sample,
S is known, B is sequenced, and immune profiling thus
solves for F.
Raw counts of an input sample were normalized to counts

per million, and linear epsilon support vector regression was
used to solve equation 1, yielding estimated mRNA frac-
tions of the immune cells represented in the iHEMs.
Different immune cell types generate differing amounts of
mRNA, so a final operation is needed to generate a final cell
type percentage estimation. To do this, cell typeespecific
correction factors were applied to the mRNA fractions, and
the resulting corrected fractions were then scaled such that
the sum of the corrected coefficients equaled the sum of the
coefficients from the original mRNA.

Analytical Validation

The materials and methods that went into the analytical
validation are detailed in the following sections. Where
applicable, these materials and methods also apply to iHEM
generation and definition.

Cells and Specimens
Cryopreserved human peripheral blood mononuclear cells
(PBMCs) from normal healthy donors and cryopreserved
human CD4þ T cells (enriched by negative selection) from
normal healthy donors were purchased from StemExpress
(Folsom, CA) and Astarte Biologics (Bothwell, WA), and
were stored in liquid nitrogen on receipt. Cryopreserved
human CD56þ NK cells from normal healthy donors
(enriched by negative selection) were obtained from Ste-
mExpress. Cryopreserved human Tregs from normal
healthy donors (enriched first by negative selection of
CD4þ T cells, followed by positive selection of CD25þ

cells) were obtained from StemExpress. Fresh human
CD14þ peripheral blood monocytes from normal healthy
jmd.amjpathol.org - The Journal of Molecular Diagnostics
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donors were purchased from StemExpress and received
within 20 hours of donor apheresis. The PC3 human
prostate cancer cell line was purchased from Sigma-Aldrich
(St. Louis, MO), and was maintained in RPMI 1640 media
supplemented with 10% fetal bovine serum, 10 mmol/L
HEPES buffer, 1� GlutaMAX, and 50 mg/mL gentamicin.
Cell culture reagents for PC3 maintenance were purchased
from Gibco/Thermo Fisher (Waltham, MA). FFPE samples
were acquired from Discovery Life Sciences (Huntsville,
AL), Cureline (Brisbane, CA), and House of Tissues
(Janesville, WI).

Isolation of CD4þ T Cells, CD8þ T Cells, CD14þ Monocytes,
CD19þ B Cells, and CD56þ NK Cells from PBMCs
Cryopreserved PBMCs (50 to 100 million cells) were
removed from liquid nitrogen storage and thawed in a
37�C water bath with gentle hand shaking until only a
small piece of ice remained. The cells were gently trans-
ferred to a 50-mL conical centrifuge tube. Prewarmed
medium [RPMI 1640 (no phenol red) supplemented with
10% fetal bovine serum, 10 mmol/L HEPES buffer, 1�
GlutaMAX, and 50 mg/mL gentamicin; 1 mL] was added
dropwise to the cells. Prewarmed medium (15 mL) was
then slowly added to the cells. Cells were centrifuged at
200 � g for 10 minutes at room temperature. The super-
natant was aspirated, and the cells were resuspended in 1.7
mL fluorescence-activated cell sorting (FACS) buffer
[calcium- and magnesium-free Hanks’ balanced salt solu-
tion (HBSS) supplemented with 2% fetal bovine serum and
0.1% sodium azide] and placed on ice. Aliquots (100 mL)
were transferred to each of 10 tubes containing 100 mL
PBMC antibody panel [allophycocyanin (APC) anti-
human CD127 (clone A019D5), phosphatidylethanol-
amine (PE) anti-human CD25 (clone M-A251), PE/Cy7
anti-human CD194, Brilliant Violet 421 anti-human CD3,
Brilliant Violet 785 anti-human CD4, PerCP anti-human
CD8a, Brilliant Violet 510 anti-human CD14, APC/Fire
750 anti-human CD19, Alexa Fluor 700 anti-human CD45,
PE/Dazzle 594 anti-human CD56; BioLegend, San Diego,
CA], and incubated at 4�C for 20 minutes. The cells were
washed twice with 1 mL cold FACS buffer by centrifu-
gation at 350 � g, 5 minutes, 4�C. Pellets were each
resuspended in 100 mL cold FACS buffer and then pooled.
SYTOX Green dead cell stain (Thermo Fisher; 1 mL) was
added to pooled cells. FACS sorting was performed using
the BD Biosciences (San Jose, CA) Aria Fusion at the
Flow Cytometry Research Core Facility at Saint Louis
University School of Medicine (St. Louis, MO).
Compensation was established using Anti-Mouse Ig, k/
Negative Control Compensation Particles Set (BD Bio-
sciences) for conjugated antibodies and PBMCs for
SYTOX Green dead cell stain. To start, 500,000 CD14þ

monocytes were sorted using a 100-mm nozzle into a 15-
mL conical polypropylene tube containing 3 mL cold
sort buffer (HBSS and 20% fetal bovine serum). Then, the
nozzle was switched to the 70-mm size and 500,000 each of
The Journal of Molecular Diagnostics - jmd.amjpathol.org
CD4þ T cells, CD8þ T cells, CD19þ B cells, and CD56þ

NK cells were simultaneously sorted into 1.5-mL tubes
containing 300 mL cold sort buffer. CD14þ monocytes
were centrifuged in a swinging bucket rotor for 5 minutes
at 1000 � g at 4�C. Lymphocytes were microcentrifuged at
100 � g at 4�C for 1 minute, and then, without removal of
the tubes, microcentifuged an additional 4 minutes at
1000 � g. The initial low speed spin prevented trailing of
the cell pellet up the side of the tube. Supernatants were
aspirated and pellets were lysed in 350 mL Buffer RLT
Plus (Qiagen, Germantown, MD) supplemented with 1:100
volume ß-mercaptoethanol. RNA was extracted using the
RNeasy Plus Micro Kit (Qiagen), according to the manu-
facturer’s instructions. RNA concentration was measured
using the Qubit assay (Thermo Fisher), according to the
manufacturer’s instructions.

Isolation of Tregs from CD4þ T Cells
Cryopreserved CD4þ T cells (5 to 15 million) were thawed
and processed for FACS sorting, as described above for
cryopreserved PBMCs, except that thawed cells were
resuspended in 300 mL FACS buffer; and 100-mL aliquots
were transferred to each of three tubes for staining with
PBMC antibody panel. CD45þ/CD3þ/CD8�/CD4þ/
CD19�/CD127low/CD25þ/CCR7þ cells were FACS sorted
into 1.5-mL tubes containing 300 mL sort buffer, and RNA
was isolated as described above.

In Vitro Macrophage Differentiation
Fresh CD14þ peripheral blood monocytes were received
within 20 hours of donor apheresis. Cells were washed in
calcium- and magnesium-free HBSS supplemented with 2%
human serum albumin (Sigma-Aldrich) by centrifugation at
200 � g for 10 minutes at room temperature. Pellets were
resuspended to a concentration of 1 � 106 cells/mL in
ImmunoCult-SF Macrophage Medium (STEMCELL
Technologies, Vancouver, BC, Canada) supplemented with
50 ng/mL human recombinant macrophage colony-
stimulating factor (M-CSF; STEMCELL Technologies).
Cells were then seeded (day 0) at 2.5 mL per well of 6-well
plates, 5 mL per T-25 cm2

flask, or 15 mL per T-75 cm2

flask and incubated at 37�C. On day 4, cells were fed with
one half volume of media supplemented with 50 ng/mL M-
CSF. For M1-like differentiation, on day 6, cells were
treated with media supplemented with 50 ng/mL M-CSF,
10 ng/mL lipopolysaccharide (Sigma-Aldrich), and 50 ng/
mL interferon-g (STEMCELL Technologies). For M2-like
differentiation, on day 6, cells were treated with media
supplemented with 50 ng/mL M-CSF and 10 ng/mL IL-4
(STEMCELL Technologies). After the day 6 additions,
incubation at 37�C was continued, and cells were harvested
on day 8.

For flow cytometry, M1 macrophages were detached by
replacing media with Accutase solution (Sigma-Aldrich). M2
macrophages were detached by replacing media with 2.5
mmol/L EDTA in HBSS. Flasks were incubated at 37�C for
559
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15 minutes. Cells were then triturated off the flasks numerous
times, and then transferred to 15-mL centrifuge tubs. Tubes
were centrifuged 5 minutes at room temperature at 200 � g.
Pellets were resuspended in macrophage FACS buffer (HBSS
supplemented with 0.5% human serum albumin; Sigma-
Aldrich), 5 ng/mL M-CSF, 2 mmol/L EDTA, and 0.1% so-
dium azide. Fc receptors were blocked using Human TruSt-
ain FcX, according to manufacturer’s instructions
(BioLegend), before staining with PE anti-CD80 (2D10), PE
anti-CCR7 (G043H7), Brilliant Violet 421 anti-CD206 (15-
2), or PE anti-CD209 clone 9E9A8 (BioLegend).

For RNA extractions, M1 and M2 macrophages were
differentiated in 6-well dishes and harvested by aspirating
media and lysing cells with 1 mL Buffer RLT Plus sup-
plemented with 1:100 volume ß-mercaptoethanol.

For cell mixes, M1 and M2 macrophages were differen-
tiated in Nunc UpCell 6 Multidishes (Thermo Fisher) and
detached according to manufacturer’s instructions. Macro-
phages were pelleted by centrifugation at 200 � g for 5
minutes at room temperature. Pellets were resuspended in
HBSS supplemented with 0.5% human serum albumin, 5
ng/mL M-CSF, and 5 mmol/L EDTA. Cells were counted
using a hemocytometer.

SM-PC3 Mixes
Cryopreserved PBMCs (50 million cells; Astarte Biologics)
were thawed and stained for flow cytometry using PBMC
antibody panel, as described above. Percentages of CD4þ T
cells, CD8þ T cells, CD14þ monocytes, CD19þ B cells,
CD56þ NK cells, and Tregs were measured. Then, 1 � 106

viable CD45þ cells were sorted using a 100-mm nozzle, as
described above. The volume of collected cells was
measured to calculate the final cell concentration. A super-
mix (SM) of 96% viable CD45þ cells, 2% M1 macro-
phages, and 2% M2 macrophages was then prepared. This
super mix was then combined with PC3 cells (counted with
a hemocytometer) at varying percentages. All cells and cell
mixes were kept ice cold before centrifuging at 4�C for 10
minutes at 200 � g. Pellets were lysed in 350 mL Buffer
RLT Plus supplemented with 1:100 volume ß-mercaptoe-
thanol, and RNA was extracted as described above.

Barycentric Cell Mixes Used in Determining Cell Corrections
and Analytical Performance
Duplicate vials of cryopreserved PBMCs (50 � 106 cells/
vial) from six different normal healthy donors were ob-
tained from StemExpress. One vial from each donor was
processed for staining with PBMC antibody panel, as
described above. CD4þ T cells, CD8þ T cells, CD14þ

monocytes, CD19þ B cells, and CD56þ NK cells (500,000
cells each) were FACS sorted, as described above. The
second vial from each donor was likewise stained with
PBMC antibody panel, but Tregs were FACS sorted from
the entire sample. At least 300,000 Tregs were obtained
from each donor. FACS sorted cells were pelleted and lysed
at a concentration of 500,000 cells/mL in Buffer RLT Plus
560
supplemented with 1:100 volume ß-mercaptoethanol. Ly-
sates were stored at �80�C.
Fresh CD14þ peripheral blood monocytes from six

different normal healthy donors were obtained from Ste-
mExpress. M1 and M2 macrophages were differentiated in
Nunc UpCell 6 Multidishes, as described above (triplicate
wells per donor). Cells from the triplicate wells were har-
vested, pooled, and pelleted. Pellets were resuspended in 1
mL HBSS supplemented with 0.5% human serum albumin,
5 ng/mL M-CSF, and 5 mmol/L EDTA and counted using a
hemocytometer. Cells were pelleted and then lysed in 1 mL
in Buffer RLT Plus supplemented with 1:100 volume ß-
mercaptoethanol. Lysates were stored at �80�C.
The barycentric cell mixes were assembled by combining

lysates from the individual cell types at ratios to yield the
equivalent cell percentages shown in Supplemental Table
S4. RNA was extracted from the combined lysate mixes
using the RNeasy Plus Micro Kit (Qiagen), according to the
manufacturer’s instructions.

Dissociated Tumor Cells
Cryopreserved dissociated tumor cells from three in-
dications (ovarian adenocarcinoma, lung adenocarcinoma,
and melanoma) were obtained from Discovery Life Sciences
(Huntsville, AL). Cells were processed and stained for
FACS analysis, as described above for cryopreserved
PBMCs, except that before antibody staining, Fc receptors
were blocked using Human TruStain FcX, according to
manufacturer’s instructions (BioLegend).
The estimates of M1, M2, and CD14 cell types could not

be evaluated in the dissociated tumor cell samples because
acceptable flow markers do not exist for M1 and M2 mac-
rophages, and flow cytometry of CD14þ dissociated tumor
cells measures all cells exhibiting CD14 proteins (mono-
cytes, M1 macrophages, M2 macrophages, dendritic cells,
and, at a lower level, neutrophils), whereas the ImmunoPr-
ism assay specifically measures CD14þ monocytes. In
addition, technical challenges were encountered with the
CD56 antibody for flow cytometry measurements; thus,
CD56þ cells were omitted from the analysis in the lung and
melanoma samples.
Immunohistochemistry

Immunohistochemistry staining, imaging, and analysis were
performed by Mosaic Laboratories (Lake Forest, CA).
Sections from 10 FFPE blocks (4 breast cancer, 2 lung
cancer, and 4 head and neck cancer; Discovery Life Sci-
ences) were mounted on slides and stained with anti-CD20
(Dako clone L26) or costained with anti-CD8 (Dako clone
C8/144B) and anti-FoxP3 (Abcam clone 236A/E7). Adja-
cent sections were analyzed using ImmunoPrism. Stained
whole slides were imaged using an Aperio slide scanner
(Leica Biosystems, Buffalo Grove, IL). Cells were quanti-
tated for the entire tissue area using Halo software (Indica
jmd.amjpathol.org - The Journal of Molecular Diagnostics
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Labs, Albuquerque, NM). B cells were CD20þ and CD8þ,
T cells were CD8þ, and Tregs were FoxP3þ/CD8�.

Control RNA

The ImmunoPrism positive control was made by frag-
menting FirstChoice Human Spleen Total RNA (Thermo
Fisher). Total spleen RNA was fragmented using NEBNext
Magnesium RNA Fragmentation Module (New England
Biolabs, Ipswich, MA). Total RNA (2 mg) was fragmented
at 94�C in a total volume of 20 mL, according to the man-
ufacturer’s protocol. After 3 minutes, the fragmentation was
stopped by placing the tube on ice, adding 2 mL 10� RNA
Fragmentation Stop Solution (New England Biolabs, Ips-
wich, MA), and mixing by pipetting. The solution was
increased to a volume of 100 mL with molecular-grade water
and the reaction was cleaned up with a Zymo RNA Clean
and Concentrator-5 column (Irvine, CA). RNA was eluted
in 22 mL molecular-grade water. Concentration was deter-
mined using a High Sensitivity RNA Qubit (Thermo
Fisher), and distribution value 200 (DV200) was determined
using a bioanalyzer (Agilent Technologies, Santa Clara,
CA). The RNA was diluted to 10 ng/mL with molecular-
grade water, aliquoted, and stored at �80�C until use.

The FFPE WT ALK-RET-ROS1 Fusion Negative FFPE
RNA Reference Standard was purchased from Horizon
Discovery (Cambridge, UK) and used as a negative control.
This fusion-negative FFPE RNA reference standard was
chosen because it was generated from cell lines with no
immune component. The reproducibility and negligible
immune cell content were confirmed using three replicate
40-ng samples prepared on different days and by different
operators.

FFPE RNA Extraction

All FFPE samples were assessed for tumor purity by a
board-certified pathologist (E.J.D.). Extractions were per-
formed using the RNAstorm kit, according to the manu-
facturer’s instructions (Cell Data Sciences, Fremont, CA).
RNA quantity was assessed by the High Sensitivity RNA
Qubit assay (Thermo Fisher). A predefined yield of 40 ng
FFPE RNA was established to increase the rate of suc-
cessful library generation. Quality of the RNA was assessed
using a bioanalyzer (Agilent Technologies, Santa Clara,
CA), but no analytical threshold for DV200 was established.

Tissue Cellularity Limitations

ImmunoPrism requires 40 ng of total RNA from an FFPE
specimen. If this amount is unattainable from a sample, this
would be considered a quality control failure (quality not
sufficient failure), and the sample would not be character-
ized by the assay. Therefore, the performance of our assay is
only guaranteed with this minimum amount of starting
RNA. From unpublished experiments, FFPE samples were
The Journal of Molecular Diagnostics - jmd.amjpathol.org
found to yield 0.94 to 4.64 pg of RNA per cell. Therefore,
one can reason that ImmunoPrism may require 42,560 to
8633 cells as input to be successfully profiled. Under these
assumptions, paucicellular samples may not be able to be
characterized by ImmunoPrism.

Library Preparation and Sequencing

Libraries were prepared using the ImmunoPrism Kit
(Cofactor Genomics, Inc., St. Louis, MO), according to the
manufacturer’s instructions. The workflow for the Immu-
noPrism Kit is summarized in Figure 1A. RNA input to
library preparation was 20 ng for high-quality RNA samples
and 40 ng for FFPE samples. A precapture library threshold
requirement of 200 ng was defined. Any samples with <200
ng of material following library construction are not moved
forward into hybridization and are noted as failing library
construction. For whole transcriptome RNA sequencing, the
xGen Exome Research Panel biotinylated oligonucleotide
pool (Integrated DNA Technologies, Coralville, IA) was
substituted for the custom pool included in the ImmunoPr-
ism kit. Final libraries were sequenced as single-end 75-bp
reads on a NextSeq500 (Illumina, San Diego, CA),
following the manufacturer’s protocols.

Calculation

Limit of detection (LOD) was calculated by iteratively
considering the titrations (from highest immune content to
lowest) for each cell type individually. At each step, error
was calculated and the SD of that error was determined, or
the precision for replicates of that step. Two SDs were
subtracted from the mean error. Iteration stopped if that
difference was <0%. At that point, linear interpolation was
used to find the previous known amount at which this dif-
ference is 0%. If the difference was not <0%, then iteration
continued to the next group of replicates with lower
abundance.

Results

Assay Validation Design

Validating an RNA-based assay is challenging in and of
itself, owing to potential changes in RNA content during
sample processing, which can cause degradation and
chemical modification of RNA. A clinical RNA assay needs
to be robust to these potential changes. Analytically vali-
dating the ImmunoPrism assay is additionally challenging
because of the inability to experimentally control levels of
various immune cell types in a tumor sample. To address
these challenges, the performance of the assay is analyti-
cally validated by progressively testing less controlled and
more complicated and more highly processed samples. First,
samples composed of purified immune cells are character-
ized. Second, controlled interfering substances are titrated
561
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into samples with known immune cell content. Third,
testing is conducted on fresh (unfixed) tumor tissue. Finally,
performance in FFPE samples is measured. Each progres-
sive step adds new evidence in a more complicated sample,
while corroborating performance in previously tested, better
controlled samples. By chaining these successive results, we
are able to rigorously test the analytical performance to
quantitatively measure the presence of immune cells in
complicated and heavily processed samples. The overall
validation approach is visualized in Figure 1B.

This validation was performed using 86 FFPE, fresh-
frozen, and control samples. The samples were selected to
reflect the anticipated specimen types for the assay (ie, FFPE
human solid tumor tissue), and an appropriate number was
obtained to provide a reasonable assessment of the assay
performance. In addition, positive and negative control
samples of commercially available human spleen and cancer
cell line RNA, respectively, were included. All samples were
processed with the ImmunoPrism tumor profiling molecular
workflow and analysis pipelines to establish the analytical
Figure 1 ImmunoPrism workflow. A: The assay is designed to use multiple type
fresh-frozen tissue. RNA is extracted from the tissue, and selected RNA transcripts
are analyzed using the ImmunoPrism cloud-based analysis pipeline to generate ce
sample. B: The assay was evaluated for multiple performance parameters, including
various types of samples: mixes of immune cells only, mixes of immune cells and p
and FFPE tumor. gDNA, genomic DNA; IHC, immunohistochemistry; TME, tumor m
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performance characteristics of the assay. Sequencing infor-
mation on these samples is included in Supplemental Table
S5. When possible, flow cytometry was used to measure a
known presence of immune cells in samples. These samples
include the immune cell mixes as well as the fresh-frozen
tumor samples. For some FFPE samples, ImmunoPrism es-
timations are compared with IHC measurements.

Immune Profiling in Immune Cell Only Mixes

The ImmunoPrism assay is able to robustly measure the
relative presence of eight different immune cell types: CD4þ

T cell (CD4), CD8þ T cell (CD8), CD14þ monocyte
(CD14), CD19þ B cell (CD19), CD56þ natural killer cell
(CD56), M1 macrophage (M1), M2 macrophage (M2), and
Treg. As a first step in validating the assay, its ability to
measure levels of each of the eight assayed cell types in the
absence of any nonassayed cell types was evaluated. Im-
mune cell type percentages were measured using Immu-
noPrism and flow cytometry in mixes consisting of variable
s of cancer samples, including formalin-fixed, paraffin-embedded (FFPE) and
are isolated for next-generation sequencing. Once data are generated, they
ll percentage estimations and a clinical report is generated for each patient
trueness, precision, accuracy, limit of detection, and reproducibility, using
otentially interfering substances, dissociated tumor cells from fresh tumor,
icroenvironment.
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Figure 2 Assay performance compared with
flow cytometry. A: Scatter plot of known values,
from flow cytometry, is shown on the y axis, and
values estimated by the ImmunoPrism assay are
shown on the x axis, for each of the eight cell
types for all six test mixes. The performance across
all cell types is shown in the upper left of the
graph. Statistics were calculated across all data
points. On the bottom right, the trueness (mean
error) is shown for each cell type individually. B:
The same data are presented; however, the graph
is zoomed in at the 0% to 10% range to show cell
percentage estimates at �10%. C and D: Immune
profiling with potentially interfering substances,
prostate cancer 3 cell line. C: Scatter plot of known
values, from flow cytometry, is shown on the y
axis, and values estimated by the ImmunoPrism
assay are shown on the x axis, for each of the eight
cell types in six mixes across five technical repli-
cates. The performance across all cell types is
shown in the upper left of the graph. Statistics
were calculated across all data points. On the
bottom right, the trueness and precision mea-
surements are shown for each cell type individu-
ally. D: The same data are presented; however, the
graph is zoomed in at the 0% to 8% range to show
cell percentage estimates at �8%. The limit of
detection, or minimum known value where the
precision of a cell type is retained, was calculated
for each cell type and is visualized as a horizontal
line in graph. Trueness, the mean error; precision,
the first SD around the average error (s of error);
accuracy, the root mean squared error (RMSE); r2,
the coefficient of determination. nZ 30 (C). Treg,
regulatory T cell.
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ratios of the eight cell types. Samples were generated to
permute different relative ratios of cells and to cover both
high and low abundance of each cell type. The percentage of
each cell type (as measured by flow cytometry), as well as
the amount of spiked-in M1 and M2 cells, are shown in
Supplemental Table S4. The assay was optimized on 17
training samples (Supplemental Figure S2), and the perfor-
mance of the assay was evaluated on 6 testing samples.

Estimations for the six testing samples are shown in
Figure 2, A and B. A trueness (mean error) of �0.86% is
observed across all cell types, which indicates little bias in
the assay estimations. The precision (SD of error) was
3.12% and the accuracy (root mean squared error) was
3.16%. This experiment suggests that the performance of
capturing individual cell types is unencumbered by the
value of other cell types. Our assay correlated well to flow
cytometry, with an r2 of 0.93 and P < 0.001. The accuracy
per cell type is as follows: M1, 0.14%; M2, 0.04%; CD14,
3.79%; CD19, 0.73%; CD4, 3.38%; CD56, 4.96%; CD8,
4.47%; and Treg, 2.96%. In Supplemental Figure S3, the
relative estimation errors for training and testing sample sets
is shown. These results show that the ImmunoPrism is able
to differentiate between the relative amount of different
The Journal of Molecular Diagnostics - jmd.amjpathol.org
immune cells. Of note, because cell presence is measured as
a percentage, instead of a unitless score, one can use these
measurements to directly compare the relative presence of
two or more cell types (eg, CD8 versus CD4) in a single
sample, as well as across samples. As the next step of
validation, the performance of the assay in more compli-
cated and clinically relevant samples is shown.

Immune Profiling in the Presence of Interfering
Substances

Clinical samples have a diverse set of immune and nonim-
mune cell types present, including organ tissue, cancer,
stroma, and others. In addition, input samples may have
varying levels of relevant and nonrelevant RNA (eg, ribo-
somal RNA) and, if proper measures are not taken,
contaminating DNA after extraction. To evaluate the per-
formance of the ImmunoPrism assay when challenged with
confounding factors, the assay was applied to samples with
varying levels of interfering substances: nonimmune RNA,
ribosomal RNA, and DNA.

ImmunoPrism was first tested in the presence of RNA
derived from nonimmune cells and ribosomal RNA. The
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performance of the assay was assessed using samples that
were titrated to vary the ratio of immune and nonimmune
cells. Immune cells were procured from PBMCs (six cell
types) or differentiated in vitro (two cell types). Starting
from an SM of these eight cell types, prostate cancer cell
line (PC3) was titrated into the SM in increasing amounts to
generate six samples (SM-PC3) with 100%, 50%, 25%,
10%, 5%, and 2% immune content. RNA was extracted
from these six samples, split into quintuplicate aliquots and
prepared for the ImmunoPrism assay. Samples had varying
levels of ribosomal RNA content, which is discussed later.
A total of 30 SM-PC3 samples were processed using
ImmunoPrism and compared with known values derived by
flow cytometry and controlled mixing.

Analytical Performance
Results of cell percentages estimated for all SM-PC3 sam-
ples are shown in Figure 2, C and D. For these samples, the
assay has high trueness (mean error of �0.41%), high pre-
cision (SD of error of 2.72%), and high accuracy (root mean
squared error of 2.75%) across all cell types. The trueness
and precision per cell type is as follows: M1, �0.41% �
0.41%; M2, 0.45% � 0.34%; CD14, �0.69% � 0.89%;
CD19, �0.10% � 0.45%; CD4, �3.88% � 3.51%; CD56,
2.06% � 4.08%; CD8, 0.67% � 2.10%; and Treg, �1.26%
� 1.88%. The assay performs better for some cell types than
others. CD4 and CD56 seem to be underestimated and
overestimated, respectively. However, CD8, CD19, CD14,
M1, and M2 cell types are called with low bias. Correlation
remained high (r2 of 0.83) and significant (P < 0.001),
indicating that the assay is accurate at calling absolute
percentage values, and thus practical for intrasample and
intersample comparisons of cell type presence. In
Supplemental Figure S4, the relative estimation error for
these samples is shown as well. From these results, one can
see that the assay performs well despite two potential
sources of interference.

Limit of Detection
Using these same SM-PC3 estimations, the LOD was
determined with the aim of characterizing how little of a cell
type can be reliably measured by the assay. The LOD is
defined as the minimum known value for which the preci-
sion of a cell type can be retained. For more details, see
Materials and Methods. The LOD was calculated for each
cell type and is represented in Figure 2D and detailed in
Table 1 Reportable Range for Individual Cell Types

Variable CD56 Treg CD4

Limit of
detection, %

0.46 6.46 1.89

Maximum level
of detection, %

22.90 19.40 35.00

Treg, regulatory T cell.
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Table 1. The LOD for each cell type is as follows: CD56,
0.46%; Treg, 6.46%; CD4, 1.89%; CD14, 0.25%; M1,
0.21%; M2, 0.10%; CD8 0.61%; and CD19, 0.86%. Cell
types like CD14, M1, and M2 have a low LOD (�0.25%),
whereas Treg has the highest LOD (6.46%.) These LODs
demonstrate the ability of our assay to reliably estimate even
low presence of different immune cells.

Reportable Range
The reportable range for each cell type (Table 1) was set
using the calculated LOD and the highest tested values in
the SM-PC3 samples and the immune cell only samples.
The reportable range for each cell type is as follows: CD56,
0.46% to 22.90%; Treg, 6.46% to 19.40%; CD4, 1.89% to
35.00%; CD14, 0.25% to 19.40%; M1, 0.21% to 2.00%;
M2, 0.10% to 2.00%; CD8 0.61% to 58.00%; and CD19,
0.86% to 58.25%. Of note, the assay was optimized with 17
samples (Supplemental Figure S2) that had all individual
cell types at higher relative abundance than the samples
considered for determining the reportable range and so the
assay is expected to also perform well at these higher levels
of individual cell presence. This is especially true for cell
types such as M1 and M2.

Effect of Ribosomal and Nonimmune RNA
The SM-PC3 samples contain two types of interfering
substances that may be present in clinical samples: ribo-
somal RNA and nonimmune RNA. Ribosomal RNA is
inherent to the sample because total RNA is used as the
starting input to the ImmunoPrism assay. As such, ribo-
somal RNA contributes reads to the sequencing data.
Typical samples had 0% to 25% reads aligning to the
ribosome, and rarely had as high as 80% if appropriate
mitigating steps are not followed (data not shown). Of in-
terest, in the SM-PC3 samples, the ribosomal RNA was
observed to be roughly inversely proportional to the total
immune RNA (ie, on-target RNA) in the hybridization (re-
sults not shown). Similarly, nonimmune RNA may also
have an effect on the hybridization of capture probes
designed to target immune cell RNA. Clinical samples may
have varying levels of total immune cells and thus varying
amounts of ribosomal and nonimmune RNA. Therefore, the
robustness of the assay was evaluated as a function of these
potentially interfering substances.
The effect of ribosomal content on the assay is shown in

Figure 3A. A null hypothesis that estimate errors are not
CD14 M1 M2 CD8 CD19

0.25 0.21 0.10 0.61 0.86

19.40 2.00 2.00 58.00 58.25
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correlated with ribosomal content was tested. For all cell
types, the P values are as follows: M1, 0.225; M2, 0.563;
CD14, 0.505; CD19, 0.709; CD4, 0.474; CD56, 0.061;
CD8, 0.034; and Treg, 0.421. All these cell types except
CD8, P > 0.05, and so the null hypothesis cannot be
rejected. Bolstering this result are slopes close to 0 and
small r2 values. This result suggests that ribosomal content
cannot predict the error. Therefore, one can conclude that
the assay performs independent of the ribosomal content.

Figure 3B shows the assay’s error, but now as a function
of nonimmune content in the sample. A similar statistical
experiment is performed to understand if error is correlated
with nonimmune content. For all cell types except M2 and
CD14, we see significant correlations, with P < 0.05. The
slopes of all correlations are as follows: M1, �0.012; M2,
�0.003; CD14, �0.002; CD19, �0.008; CD4, �0.052;
CD56, 0.096; CD8, 0.03; and Treg, �0.048. Despite sig-
nificant correlations, most cell types have small slopes,
which indicate a minimal impact. The largest relationship is
seen between error and the ratio of immune and nonimmune
content in CD56. Overall, these ribosomal and nonimmune
results suggest a limited to no effect of nonimmune content
to our estimations, down to the LOD of individual cell
types.
Figure 3 Immune profiling with potentially interfering substances, ribosoma
percentages is shown on the y axis, and the ribosomal content is shown on the x
samples. B: The estimation errors of measured cell percentages are shown on the y
cell type across SM-PC3 samples. The black line is the best fit to the data. This fit
0. Slope (m), coefficient of determination (r2), and P value are shown to the rig
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Effect of gDNA
The first step of the ImmunoPrism protocol, when working
from FFPE cancer samples, is to extract or purify total RNA
from the sample. During this procedure and under certain
conditions (eg, using more FFPE material than recom-
mended or insufficient DNase treatment), genomic DNA
(gDNA) species may contaminate the purified RNA prepa-
ration. To better understand the effect of gDNA contami-
nation on cell percentage calls, four FFPE cancer samples
were generated with increasing ratio of gDNA versus total
RNA. gDNA was mixed with FFPE cancer sample RNA,
which was devoid of gDNA, in increasing percentages of
0%, 5%, 10%, 20%, and 40%. As expected, increasing
gDNA had an individual effect on cell percentage estimates
at higher ranges of gDNA contamination (Supplemental
Figure S5). Thus, the threshold for maximum gDNA
contamination is currently set at 10%. Of 145 recent FFPE
samples prepared for the ImmunoPrism assay in our labo-
ratory, 123 (approximately 85%) of the RNA samples
exhibited <10% genomic DNA (mean, 4.89%; median,
1.22%). For the samples that exhibited gDNA contamina-
tion >10%, a second DNase treatment was performed,
resulting in 144 (approximately 99%) of the samples with
gDNA contamination below threshold (data not shown).
l RNA and nonimmune content. A: The estimation error of measured cell
axis, for each cell type across supermix prostate cancer 3 cell line (SM-PC3)
axis, and the percentage of immune content is shown on the x axis, for each
was statistically tested to see if it was significantly different than a slope of
ht of each cell type subplot. n Z 30 (A and B).
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The experiments in this section show the performance of
the assay under a wide range of cell values and with several
controlled sources of potential interference. In the next
section, the ability of the assay to measure the immune
profile at the site of a tumor is validated.

Immune Profiling of Tumor Environment

The ImmunoPrism assay measures the presence of various
adaptive and innate immune cells in the tumor environment.
To investigate the performance of the assay when profiling
tumor samples, dissociated tumor cells were quantified with
ImmunoPrism. This type of sample starts as a piece of fresh
tumor and is processed to isolate single cells. Dissociated
tumor cells serve as an approximation of clinical FFPE
tumor samples, while still retaining the ability to measure
cell type abundance with flow cytometry.

The performance of ImmunoPrism was evaluated by
estimating the presence of immune cells in three dissociated
tumor cell samples originating from ovarian adenocarci-
noma, lung adenocarcinoma, and melanoma tumor tissue.
Results for these samples across five cell types are shown in
Figure 4A. Please see Materials and Methods for details on
how limitations with flow cytometry prevented the evalua-
tion of the other three cell types. The accuracy (root mean
squared error) across all indications and cell types was
8.12%, and the accuracies per indication were as follows:
lung, 7.40%; melanoma, 9.25%; and ovarian, 7.70%. The
accuracies per cell type were as follows: CD19, 7.40%;
CD4, 8.37%; CD56, 0.40%; CD8, 10.56%; and Treg,
7.02%. The overall accuracy (root mean squared error) of
these samples was lower than SM-PC3 (8.12% versus
2.75%). Regardless, these results corroborate previous high
accuracies measured and demonstrate that ImmunoPrism is
able to identify and measure the presence of immune cells
that have infiltrated a tumor.

Immune Profiling of FFPE Samples

The current gold standard method for storing and preserving
tumor samples is FFPE treatment. Countless cancer sam-
ples, with extensive clinical data, are currently preserved
this way and are inputs to most retrospective studies.
ImmunoPrism was optimized for FFPE treated RNA and as
such can evaluate archived FFPE samples. This may enable
clinicians and researchers to better understand the immune
component of the tumor microenvironment in all their
archived samples.

To demonstrate the effectiveness of ImmunoPrism with
FFPE samples, 28 samples of various tissue/cancer types
were quantified using ImmunoPrism. Supplemental Table
S6 lists these samples, detailing the disease, percentage
tumor cellularity, DV200, total RNA extracted, whether IHC
data are available, and whether the samples passed molec-
ular quality control. In all, 27 of 28 (z96%) passed mo-
lecular quality control (see Materials and Methods). Sample
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F00065618 failed molecular quality control because library
generation did not produce enough material to perform a
hybrid capture. If RNA is highly modified, as happens as a
result of formalin fixation, it will be more inaccessible to
reverse transcription, resulting in lower precapture library
yield. Therefore, the likely reason a sample may fail library
construction is formalin overfixation.

Comparison to Immunohistochemistry
In 10 of these FFPE samples, CD8, CD19, and Treg cell
percentages were measured using IHC and compared with
immune cell percentages reported by ImmunoPrism. These
results are shown in Figure 4, BeD. CD8 and CD19
significantly (P < 0.001) and strongly (r2 of 0.81 and 0.85,
respectively) correlate with IHC. Treg exhibits a lower
correlation (r2 of 0.34) with lower significance (PZ 0.078).
It is notable that all linear regressions have slopes close to
that of the doubling slope (ie, when IHC cell counts double,
the percentage of estimated cells doubles). These results
show that ImmunoPrism estimations correlate well with
IHC measurements, suggesting that ImmunoPrism can
accurately profile the presence of immune cells in FFPE
samples.

Reproducibility
Assay variability can occur in different areas of the protocol or
analytical pipeline. This variability reduces the ability for the
assay to discern true biological variability across samples and
minimizes the reproducibility of past estimations. To assess
the reproducibility of the ImmunoPrism assay, RNA was
extracted for one of the FFPE samples (F00020350) and split
into six replicates. Two people each processed three replicates
on different days and on different sequencing machines. In
Figure 5A, the differences in estimates for these replicates is
shown. The SD for each of the cell types is as follows: CD14,
0.09%; M1, 0.04%; CD56, 0.22%; M2, 0.15%; CD4, 1.61%;
Treg, 3.20%; CD19, 3.56%; and CD8, 4.13%. Cell types with
higher means (CD8, CD19, and Treg) seem to have a higher
variance than those with low means (CD4, M2, CD56, M1,
and CD14). Table 2 shows the reproducibility of the assay by
the same operator, and between operators on different ma-
chines. Among replicates performed by the same operator, the
average SD across all cell types is 0.70% and 3.65%. Simi-
larly, when comparing the replicates performed by two
different operators on two different machines on two different
days, the average difference of SDs across all cell types is
2.65%. These results indicate a high level of reproducibility
for the assay.
The experiments in this section show how the assay

correlates with IHC and performs reliably in FFPE. In the
next section, the controls for ImmunoPrism are described.

Controls

Control materials were developed to ensure the ImmunoPr-
ism assay is performing as expected, regardless of test sample
jmd.amjpathol.org - The Journal of Molecular Diagnostics
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Figure 4 Validation of assay using dissociated
tumor cells (DTCs) from tumors and performance
comparison to immunohistochemistry (IHC). A:
Cell percentage measurements of DTCs from three
cancer types (lung adenocarcinoma, melanoma,
and ovarian adenocarcinoma) were assessed using
the ImmunoPrism assay and compared with flow
cytometry of the same samples. The known value
from flow cytometry is shown on the y axis, and
the estimated value from the assay is shown on the
x axis. In the upper left, the accuracy [calculated
as the root mean squared error (RMSE)] is shown
over all cells for all samples and for each disease
individually (lung adenocarcinoma, melanoma,
and ovarian adenocarcinoma). The accuracy for
individual cell type measurements, across disease
types, is shown in the lower right. The black line
represents the slope of 1. BeD: Cell percentage
measurements from ImmunoPrism compared with
IHC for three cell types [CD8, CD19, and regulatory
T cell (Treg)] across 10 formalin-fixed, paraffin-
embedded samples. Cellular IHC counts are shown
on the y axis, and the estimated cell percentage
from the assay is on the x axis. The black line
represents the best fit regression line of the data.
The coefficient of determination (r2) of this fit is
presented in the upper left corner. These fits were
statistically tested to see if they are significantly
different than a slope of 0, and the P value is
shown in the upper left corner.
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composition. Human spleen RNA was chosen because all
eight cell types estimated their LOD on average. In addition,
the human spleen RNA was fragmented to allow processing
in an identical manner to degraded FFPE RNA.

The reproducibility of the fragmented spleen RNA was
measured to confirm it as a suitable positive control. To do
this, six replicate samples were prepared and processed by two
different operators on two different days. In Figure 5B, the
differences in estimations are shown. The SD for each of the
cell types is as follows: M1, 0.13%; M2, 0.13%; Treg, 0.45%;
CD8, 0.35%; CD4 0.58%; CD56, 0.63%; CD14, 1.18%; and
CD19, 1.14%. The deviation of samples across all cell types is
low. In addition, the mean measurements of all cell types
except Treg are above the respective LODs. Therefore, frag-
mented spleen RNA is an appropriate positive control because
ImmunoPrism reproducibly measures all eight cell types.

It is challenging to develop a true negative control for
targeted capture molecular methods because oligo capture
probes are designed to capture and enrich for targets with
high sequence homology to the probes. Moreover, the
success of the molecular steps, following capture (before
sequencing), relies on the release of genetic material from
the capture probes. A true negative control (containing no
sequence homology to the oligo probes in the capture)
would end up releasing no material and subsequently failing
library generation. Our goal was to develop a negative
The Journal of Molecular Diagnostics - jmd.amjpathol.org
control that could be employed through the molecular and
analytic methods with appropriate outputs. The commer-
cially available ALK-RET-ROS1 Fusion Negative FFPE
sample was chosen as a negative control because it lacks
immune cell content but has sufficient on-target transcripts
to generate successful libraries and sequencing data. To
confirm the suitability of ALK-RET-ROS1 Fusion Negative
FFPE material as a negative control, three replicate samples
were prepared and quantified by the assay on different days.
Figure 5C shows the differences in estimates for these
samples for each of the cell types. The mean estimated
values for the cell types are at or close to 0%: M1, 0.00%;
CD4, 0.04%; M2, 0.08%; Treg, 0.56%; CD14, 0.64%; CD8,
0.69%; CD19, 1.23%; and CD56, 1.24%. Of the eight cell
types, four (M1, CD4, M2, and Treg) exhibited mean cell
percentages at or lower than the respective LOD. These
characteristics confirm the suitability of ALK-RET-ROS1
Fusion Negative FFPE RNA as a negative control.
Discussion

We believe that the analytical validation approach presented
in this work potentially serves as a reference for validation
of other intricate RNA-based assays. The progressive nature
of this approach allows one to characterize the analytical
567
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Figure 5 Reproducibility and control materials. A: Reproducibility of estimates made with ImmunoPrism. RNA from a formalin-fixed, paraffin-embedded
(FFPE) sample (F00020350) was split into six replicates after extraction. Replicates were divided and processed by two people on different days and on
different sequencing machines. The y axis shows the mean centered estimates for each of the cell replicates. Each cell type is listed on the x axis. B:
Reproducibility of the fragmented spleen RNA positive control. RNA from the standard control sample was split into six replicate samples and processed with
the assay by two different operators on 6 different days. Results are presented as they are in A. C: Reproducibility of the ALK-RET-ROS1 Fusion Negative FFPE
material as a negative control. RNA from the negative control samples was split into three replicate samples and processed with the assay on different days.
The y axis shows the estimated percentage reported by the assay for each of the cell types on the x axis. A and B: For each cell type, the short, black
horizontal lines connected by a vertical line represent the upper and lower first SDs. The mean values for each cell type are displayed in the x-axis tick labels.
AeC: Cell types on the x axis are sorted by their mean estimated values from low to high. Treg, regulatory T cell.
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performance of the assay in well-controlled samples, and
iteratively corroborate with samples more akin to FFPE
tumor samples. This approach addresses several challenges
of evaluating RNA-based assays on primary tissue. For
example, dissociated tumor cell samples are useful because
they may contain immune cells from a tumor that can be
quantified via flow cytometry. However, it is infeasible to
procure sufficient dissociated tumor cell samples to
adequately characterize performance, such as precision and
LOD, across a diverse set of immune cell combinations.
Similarly, FFPE samples represent the typical input for the
assay, but the immune content can only be orthogonally
validated by methods such as IHC. IHC must be used
because FFPE processing of cancer samples prevents
Table 2 Intraoperator and Interoperator Variability of the
ImmunoPrism Assay

Cell
Operator
1 mean, %

Operator
1 SD, %

Operator
2 mean, %

Operator
2 SD, %

Difference of
SDs, %

CD4 12.21 2.27 11.10 1.29 0.97
CD8 31.11 1.24 34.06 6.56 5.32
CD19 27.16 0.56 30.42 5.45 4.89
CD14 0.08 0.13 0.00 0.00 0.13
CD56 0.64 0.12 0.31 0.22 0.09
M1 0.46 0.04 0.44 0.04 0.00
M2 1.11 0.22 0.99 0.10 0.13
Treg 16.54 1.00 11.85 3.65 2.65
Mean 0.70 3.65 2.65

Treg, regulatory T cell.
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validation by flow cytometry. Even with IHC, there are
challenges in orthogonal validation because it is infeasible
to use IHC and the ImmunoPrism assay on the same slice of
FFPE tissue. Two slices of a heterogeneous tissue block
must be used, and despite being adjacent, can have different
populations of immune cells. This fact limits our ability to
draw strong conclusions about ImmunoPrism performance
solely on comparisons to IHC. The analytical validation
presented attempts to mitigate the challenges of testing
RNA-based assays on primary tissue, and we hope it may
serve as a roadmap to researchers interested in future vali-
dation of complex RNA-based clinical assays.
This assay was designed to specifically profile the im-

mune response by reporting the relative presence of eight
different immune cells. Other cell types that would be
valuable to measure include mast cells, neutrophils, den-
dritic cells, and more. Similarly, minor immune cell sub-
types (eg, CD8þ effector memory and CD8þ central
memory) would be potentially valuable to consider in future
versions of ImmunoPrism. Our assay is complementary to
other pieces of information about the immune system. It has
been shown that characterizing T cell receptor diversity and
clonality can help inform how well a host has identified a
cancer. In addition, tumor mutational burden has been
implicated in clinical outcomes using checkpoint in-
hibitors.29 Assays that measure T cell receptor diversity and
clonality or tumor mutational burden could be comple-
mentary to ImmunoPrism in describing the state of the
immune response in a patient. Interestingly, all these
different characteristics tell a different part of the story of
immune response. It is exciting to think about the potential
jmd.amjpathol.org - The Journal of Molecular Diagnostics
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of bringing these disparate measurements together to form a
single, multidimensional biomarker. This could be powerful
to use for predictive and prognostic use for particular ther-
apies, particularly checkpoint inhibitors.

ImmunoPrism was designed to identify and measure the
abundances of leukocytes in and around the tumor, with the
goal to facilitate immuno-oncology research and treatment.
However, information about immune cell presence could be
useful in other areas of human health as well. For example,
understanding the presence of different immune cells could
help inform dysfunctional or autoreactive immune response
in diseases such as rheumatoid arthritis, inflammatory bowel
disease, and psoriasis, as well as conditions such as asthma
and allergies. For these diseases and conditions, it may be
less practical to consider tissue samples, but the immune
response could be profiled from the blood. Conceptually,
RNA harvested from blood should be of higher quality than
RNA from FFPE tissues and so should be an appropriate
input to ImmunoPrism. Regardless, ImmunoPrism may
prove to be useful in any health condition that has an im-
mune component.

In this work, the analytical validation of the ImmunoPr-
ism assay is presented. This is the first validation of a
clinical assay that uses multidimensional RNA models of
immune cells to identify immune cells in the tumor micro-
environment. The assay was characterized in controlled
samples and was shown to have high trueness, precision,
accuracy, and reproducibility. The assay continued to
perform well in the presence of potentially interfering sub-
stances. Experiments with dissociated tumor cells, which
mimic the tumor microenvironment, and FFPE samples
corroborated the analytical performance of the assay. In all,
experimental results of controlled and uncontrolled samples
show that ImmunoPrism is a robust assay for measuring the
presence of eight immune cell types in FFPE tissue.
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